Influence of Synthesis Conditions on the Structural, Optical, and Electrophysical Properties of TiO2/CuxO Nanocomposites
Martyshov M. N.
1, Pavlikov A. V.
1,2, Kytina E. V.
1, Pinchuk O. V.
2, Savchuk T. P.
1,2, Konstantinova E. A.
1, Zaitsev V. B.
1, Kashkarov P. K.
1,31Department of Physics, Lomonosov Moscow State University, Moscow, Russia
2National Research University of Electronic Technology -- MIET, Zelenograd, Moscow, Russia
3National Research Center “Kurchatov Institute”, Moscow, Russia
Email: pavlikov@physics.msu.ru, vzaitsev@phys.msu.ru
Nanocomposites based on anodic titanium oxide nanotubes with copper oxide nanoparticles were formed and their structural, optical, and electrophysical properties were studied. Defects in the structure of the samples were identified by electron paramagnetic resonance and it was shown that, as a result of copper oxide deposition, CuO nanoparticles were formed on the surface of nanotubes. It was found that the conductivity of the structure decreases by several orders of magnitude with an increase in the number of deposition cycles. It was shown that this effect could be associated with the formation of TiO2/CuO heterojunctions on the nanotube surface. It was shown for the first time that an increase in the content of copper oxide in TiO2/CuxO nanocomposites was accompanied by a decrease in conductivity and an increase in the number of defects. Keywords: titanium oxide, nanotubes, nanocomposites, copper oxide nanoparticles, defects, conductivity.
- M. Zubair, H. Kim, A. Razzaq, C.A. Grimes, S.-I. In. J. CO2 Util., 26, 70 (2018)
- J. Xiong, M. Zhang, M. Lu, K. Zhao, C. Han, G. Cheng, Z. Wen. Chinese Chem. Lett., 33, 1313 (2022)
- C.A. Grimes, G.K. Mor. TiO2 Nanotube Arrays (Springer US, Boston, MA, 2009)
- Z. Liu, X. Zhang, S. Nishimoto, T. Murakami, A. Fujishima. Environ. Sci. Technol., 42, 8547 (2008)
- J. Low, S. Qiu, D. Xu, C. Jiang, B. Cheng. Appl. Surf. Sci., 434, 423 (2018)
- O.K. Varghese, M. Paulose, T.J. LaTempa, C.A. Grimes. Nano Lett., 9, 731 (2009)
- T. Savchuk, I. Gavrilin, E. Konstantinova, A. Dronov, R. Volkov, N. Borgardt, T. Maniecki, S. Gavrilov, V. Zaitsev. Nanotechnology, 33, 55706 (2022)
- S. Rehman, R. Ullah, A.M. Butt, N.D. Gohar, J. Hazard. Mater., 170, 560 (2009)
- E.A. Konstantinova,A.A. Minnekhanov, A.I. Kokorin, T.V. Sviridova, D.V. Sviridov. J. Phys. Chem. C, 122 (18), 10248 (2018)
- E.A. Konstantinova,E.V. Kytina, V.B. Zaitsev, M.N. Martyshov, T.P. Savchuk, M.F. Kamaleev. Russ. J. Phys. Chem. B, 16 (4), 797 (2022)
- P. Ravi, V. Navakoteswara Rao, M.V. Shankar, M. Sathish. Int. J. Hydrogen Energy, 45, 7517 (2020)
- M.M. Jasim, O. A.A. Dakhil, E.H. Hussein, H.I. Abdullah. J. Mater. Sci. Mater. Electron., 31, 10707 (2020). DOI: 10.1007/s10854-020-03620-3
- Y. Zhao, J. Chen, W. Cai, Y. Bu, Q. Huang, T. Tao, J. Lu. Chem. Phys. Lett., 725, 66 (2019)
- I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, K. Takeuchi. J. Mol. Catal. A Chem., 161, 205 (2000)
- H. Liu, Y. Wang, G. Liu, Y. Ren, N. Zhang, G. Wang, T. Li. Acta Metall. Sin. (English Lett.), 27, 149 (2014)
- R. Marschall. Adv. Funct. Mater. 24, 2421 (2014)
- T. Ohsaka, F. Izumi, Y. Fujiki. J. Raman Spectrosc., 7, 321 (1978)
- L. Debbichi, M.C. Marco de Lucas, J.F. Pierson, P. Kruger. J. Phys. Chem. C, 116, 10232 (2012)
- A.V. Shabalina, A.G. Golubovskaya, E.D. Fakhrutdinova, S.A. Kulinich, O.V. Vodyankina, V.A. Svetlichyi. Nanomaterials , 12, 4101 (2022). https://doi.org/10.3390/nano12224101
- U.I. Gaya. Europ. J. Chem., 2 (2), 163 (2011)
- K. Byung-Hyun, P. Mina, K. Gyubong, K. Hermansson, P. Broqvist, C. Heon-Jin, L. Kwang-Ryeol. J. Phys. Chem. C, 122 (27), 15297 (2018)
- A.I. Kokorin. In Chemical Physics of Nanostructured Semiconductors (CRCPress, London, 2003), p. 203-261
- P.A. Mini, A. Sherine, K.T. Shalumon, A. Balakrishnan, S.V. Nair, K.R.V. Subramanian. Appl. Phys. A., 108, 393 (2012)
- O. Alev, E. Sennik, Z.Z. Ozturk. J. Alloys Compd., 749, 221 (2018). DOI: 10.1016/j.jallcom.2018.03.268
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.