Frequency transfer of an optically detected magnetic resonance and observation of the Hanle effect in a nonzero magnetic field
Vershovskii A. K. 1, Petrenko M. V. 1
1Ioffe Institute, St. Petersburg, Russia
Email: antver@mail.ioffe.ru, m.petrenko@mail.ioffe.ru

PDF
The method of transferring the frequency of an optically detected magnetic resonance both up and down by an arbitrary value is implemented in a single-beam optical pumping scheme by modulating the linearly polarized beam component. The possibility of observing the Hanle resonance in a magnetic field virtually zeroed upon transition to a rotating coordinate system is demonstrated. A model experiment was carried out, confirming the fundamental feasibility and effectiveness of the method. Keywords: Optically detectable magnetic resonance, optical resonance frequency transfer, Hanle effect, Bell-Bloom scheme, quantum magnetometer.
  1. W. Hanle. Z. fur Phys., 30 (1), 93 (1924). DOI: 10.1007/BF01331827
  2. W.E. Bell, A.L. Bloom. Phys. Rev. Lett., 6 (6), 280 (1961). DOI: 10.1103/PhysRevLett.6.280
  3. P. Franken. Phys. Rev., 121 (2), 508 (1961)
  4. E.B. Alexandrov, O.V. Konstantinov, V.I. Perel. ZhETF, 49 (7), 97 (1965). (in Russian)
  5. E.B. Alexandrov, A.M. Bonch-Bruevich, B.A. Khodovoy. Opt. i spektr., 23 (2) 282 (1967). (in Russian)
  6. W. Happer, A.C. Tam. Phys. Rev. A, 16 (5), 1877 (1977). DOI: 10.1103/PhysRevA.16.1877
  7. S. Appelt, A. Ben-Amar Baranga, A.R. Young, W. Happer. Phys. Rev. A, 59 (3), 2078 (1999). DOI: 10.1103/PhysRevA.59.2078
  8. I.K. Kominis, T.W. Kornack, J.C. Allred, M.V. Romalis. Nature, 422 (6932), 596 (2003). DOI: 10.1038/nature01484
  9. D. Budker, M. Romalis. Nat. Phys., 3, 227 (2007)
  10. E. Boto, S.S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T.M. Fromhold, M. Lim, P.M. Glover, P.G. Morris, R. Bowtell, G.R. Barnes, M.J. Brookes. NeuroImage, 149, 404 (2017). DOI: 10.1016/j.neuroimage.2017.01.034
  11. E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S.S. Meyer, L.D. Munoz, K.J. Mullinger, T.M. Tierney, S. Bestmann, G.R. Barnes, R. Bowtell, M.J. Brookes. Nature, 555, 657 (2018)
  12. J. Iivanainen, R. Zetter, L. Parkkonen. Hum. Brain Mapp., 41 (1), 150 (2020). DOI: https://doi.org/10.1002/hbm.24795
  13. N.V. Nardelli, A.R. Perry, S.P. Krzyzewski, S.A. Knappe. EPJ Quant. Technol., 7 (1), 11 (2020). DOI: 10.1140/epjqt/s40507-020-00086-4
  14. M. Rea, E. Boto, N. Holmes, R. Hill, J. Osborne, N. Rhodes, J. Leggett, L. Rier, R. Bowtell, V. Shah et al. Ann. N.Y. Acad. Sci. (2022)
  15. G. Bison, R. Wynands, A. Weis. Appl. Phys. B, 76 (3), 325 (2003). DOI: 10.1007/s00340-003-1120-z
  16. Y. Guo, S. Wan, X. Sun. J. Qin. Appl. Opt., 58 (4), 734 (2019). DOI: 10.1364/AO.58.000734
  17. M.E. Limes, E.L. Foley, T.W. Kornack, S. Caliga, S. McBride, A. Braun, W. Lee, V.G. Lucivero, M.V. Romalis. Phys. Rev. Appl., 14 (1), 011002 (2020). DOI: 10.1103/PhysRevApplied.14.011002
  18. R. Zhang, W. Xiao, Y. Ding, Y. Feng, X. Peng, L. Shen, C. Sun, T. Wu, Y. Wu, Y. Yang, Z. Zheng, X. Zhang, J. Chen, H. Guo. Sci. Adv., 6 (24), 8792 (2020). DOI: 10.1126/sciadv.aba8792
  19. A. Perry, M. Bulatowicz, M. Larsen, T. Walker, R. Wyllie. Opt. Express, 28 (24), 36696 (2020)
  20. R.J. Clancy, V. Gerginov, O. Alem, S. Becker. S. Knappe. Phys. Med. Biol., 66 (17), 175030 (2021). DOI: 10.1088/1361-6560/ac18fb
  21. V. Lucivero, W. Lee, T. Kornack, M. Limes, E. Foley, M. Romalis. Phys. Rev. Appl., 18 (2), L021001 (2022)
  22. K.-M.C. Fu, G.Z. Iwata, A. Wickenbrock, D. Budker, ArXiv200800082 Phys. Physicsquant-Ph (2020) Accessed September 9, 2020. http://arxiv.org/abs/2008.00082
  23. Z.D. Grujie, A. Weis. Phys. Rev. A, 88 (1), 012508 (2013)
  24. I. Fescenko, P. Knowles, A. Weis, E. Breschi. Opt. Express, 21 (13), 15121 (2013). DOI: 10.1364/OE.21.015121
  25. D. Budker, D. Kimball, V. Yashchuk, M. Zolotorev. Phys. Rev. A, 65 (5), 055403 (2002)
  26. S. Pustelny, W. Gawlik, S. Rochester, D.J. Kimball, V. Yashchuk, D. Budker. Phys. Rev. A, 74 (6), 063420 (2006)
  27. D.J. Kimball, L.R. Jacome, S. Guttikonda, E.J. Bahr, L.F. Chan. J. Appl. Phys., 106 (6), 063113 (2009)
  28. W. Cheng, T. Tian, Z. Wang. Eur. Phys. J. D, 73 (8), 171 (2019). DOI: 10.1140/epjd/e2019-90702-3
  29. A. Kastler. Nucl. Instrum. Methods, 110, 259 (1973). DOI: 10.1016/0029-554X(73)90698-8
  30. M.V. Petrenko, A.S. Pazgalev, A.K. Vershovskii. Phys. Rev. Appl., 15 (6), 064072 (2021). DOI: 10.1103/PhysRevApplied.15.064072
  31. A.K. Vershovsky, M.V. Petrenko. ZhTF, 91 (5), 840 (2021). (in Russian). DOI: 10.21883/JTF.2021.05.50698.337-20 [A.K. Vershovskii, M.V. Petrenko, Tech. Phys., 66 (7), 821 (2021). DOI: 10.1134/S106378422105025X].

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru