Diagnosis of the technology of titanium and hafnium oxides by luminescence methods
Bulyarskiy S. V.
1, Gusarov G. G.
1, Dudin A. A.1, Koiva D. A.1, Litvinova K. I.1
1 Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, Moscow, Russia
Email: bulyar2954@mail.ru, geog1@mail.ru, dudin.a@inme-ras.ru, dkoiva616@gmail.com, litkristy@gmail.com
The article shows the role of oxygen vacancies in the formation of luminescence bands of titanium and hafnium oxides, and also demonstrates the relationship between the intensity of luminescence bands and the conditions for the synthesis of films of these materials. It is concluded that photoluminescence is a very sensitive method for diagnosing the composition of oxides. Luminescence bands at 2.45 eV in titanium oxide and 2.91 eV in hafnium oxide make it possible to analyze the change in the film composition under various technological conditions of their production. Keywords: oxygen vacancies, titanium oxide, hafnium oxide, photoluminescence.
- M.M. Frank, S. Kim, S.L. Brown, J. Bruley, M. Copel, M. Hopstaken, M. Chudzik, V. Narayanan. Microelectron. Eng., 86 (7--9), 1603 (2009). DOI: 10.1016/j.mee.2009.03.063
- S.S. Jiang, G. He, J. Gao, D.Q. Xiao, P. Jin, W.D. Li, J.G. Lv, M. Liu, Y.M. Liu, Z.Q. Sun. Ceram. Int., 42 (10), 11640 (2016). DOI: 10.1016/j.ceramint.2016.04.067
- R. Liu, S. Zollner, P. Fejes, R. Gregory, S. Lu, K. Reid, D. Gilmer, B.-Y. Nguyen, Z. Yu, R. Droopad. MRS Proc., 670 (2001). DOI: 10.1557/PROC-670-K1.1
- G. Pacchioni, S. Valeri. Oxide Ultrathin Films (Wiley, 2011). DOI: 10.1002/9783527640171
- C.M. Yim, C.L. Pang, G. Thornton. Phys. Rev. Lett., 104 (3), 36806 (2010). DOI: 10.1103/PhysRevLett.104.036806
- A.C. Papageorgiou, N.S. Beglitis, C.L. Pang, G. Teobaldi, G. Cabailh, Q. Chen, A.J. Fisher, W.A. Hofer, G. Thornton. PNAS, 107 (6), 2391 (2010). DOI: 10.1073/pnas.0911349107
- N.S. Portillo-Velez, O. Olvera-Neria, I. Hernandez-Perez, A. Rubio-Ponce. Surf. Sci., 616, 115 (2013). DOI: 10.1016/j.susc.2013.06.006
- D.W. McNeill, S. Bhattacharya, H. Wadsworth, F.H. Ruddell, S.J.N. Mitchell, B.M. Armstrong, H.S. Gamble. J. Mater. Sci.: Mater. Electron., 19 (2), 119 (2008). DOI: 10.1007/s10854-007-9337-y
- D. Woodruff, T. Delchar. Sovremennye metody issledovaniya poverkhnosti (in Russian) (Modern methods of surface research) (Mir, M., 1989)
- S.V. Bulyarskiy, V.S. Gorelik, G.G. Gusarov, D.A. Koiva, A.V. Lakalin. Opt. Spectrosc., 128 (5), 590 (2020). DOI: 10.1134/S0030400X20050057
- X. Wang, Z. Feng, J. Shi, G. Jia, S. Shen, J. Zhou, C. Li. Phys. Chem. Chem. Phys.: PCCP, 12 (26), 7083 (2010). DOI: 10.1039/b925277k
- F.J. Knorr, C.C. Mercado, J.L. McHale. J. Phys. Chem. C, 112 (33), 12786 (2008). DOI: 10.1021/jp8039934
- M. Gallart, T. Cottineau, B. Honerlage, V. Keller, N. Keller, P. Gilliot. J. Appl. Phys., 124 (13), 133104 (2018). DOI: 10.1063/1.5043144
- C. Mercado, Z. Seeley, A. Bandyopadhyay, S. Bose, J.L. McHale. ACS Applied Materials \& Interfaces, 3 (7), 2281 (2011). DOI: 10.1021/am2006433
- B. Santara, P.K. Giri, K. Imakita, M. Fujii. J. Phys. Chem. C, 117 (44), 23402 (2013). DOI: 10.1021/jp408249q
- D.R. Islamov, V.A. Gritsenko, V.N. Kruchinin, E.V. Ivanova, M.V. Zamoryanskaya, M.S. Lebedev. Phys. Solid State, 60 (10), 2050 (2018). DOI: 10.1134/S1063783418100098
- S.V. Bulyarskiy, D.A. Koiva, G.A. Rudakov, G.G. Gusarov. Physica Status Solidi (b), 259 (6), 2100407 (2022). DOI: 10.1002/pssb.202100407
- S. Pizzini. Physical Chemistry of Semiconductor Materials and Processes (John Wiley \& Sons, Ltd, Chichester, UK, 2015). DOI: 10.1002/9781118514610
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.