Peculiarities of the formation of a filamentary structure of a microwave discharge in an argon flow
Sintsov S.V. 1, Vodopyanov A.V.1, Stepanov A.N.1, Mansfeld D.A.1, Chekmarev N.V.1, Preobrazhensky E.I.1, Murzanev A.A.1, Romashkin A.V.1
1Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
This paper presents the results of an experimental study of the spatial structure of a microwave discharge maintained in an argon flow by gyrotron radiation in a continuous mode with a frequency of 24 GHz at atmospheric pressure. In the structure of the plasma plume, stationary filamentary channels are observed, elongated along the direction of the argon flow, regardless of the orientation of the external electric field of the wave, surrounded by a diffusion halo. Measurements of the electron density, vibrational and rotational temperatures of gas molecules in plasma filaments have been carried out. The role of gas-dynamic mechanisms responsible for the formation of the inhomogeneous static structure of the plasma torch and the maintenance of a substantially nonequilibrium distribution of temperature characteristics in the discharge is discussed. Keywords: high-pressure microwave discharge, plasma torch, argon, filamentous plasma channels, filaments.
- Yu.A. Lebedev. Polymers, 13 (11), 1678 (2021). DOI: 10.3390/polym13111678
- N.S. Akhmadullina, N.N. Skvortsova, E.A. Obraztsova, V.D. Stepakhin, E.M. Konchekov, A.A. Letunov, A.A. Konovalov, Yu.F. Kargin, O.N. Shishilov. Chem. Phys., 516, 63 (2019). DOI: 10.1016/j.chemphys.2018.08.023
- Y. Hong, J. Niu, J. Pan, Z. Bi, W. Ni, D. Liu, J. Li, Y. Wu. Vacuum, 130, 130 (2016). DOI: 10.1016/j.vacuum.2016.05.012
- K.V. Artem'ev, G.M. Batanov, N.K. Berezhetskaya, V.D. Borzosekov, S.I. Gritsinin, A.M. Davydov, L.V. Kolik, E.M. Konchekov, I.A. Kossyi, Yu.A. Lebedev, I.V. Moryakov, A.E. Petrov, K.A. Sarksyan, V.D. Stepakhin, N.K. Kharchev, V.A. Shakhatov. Plasma Phys. Reports, 46 (3), 311 (2020). DOI: 10.1134/S1063780X20030010
- L.F. Spencer, A.D. Gallimore. Plasma Sources Sci. Technol., 22 (1), 015019 (2012). DOI: 10.1088/0963-0252/22/1/015019
- K.V. Artem'ev, G.M. Batanov, N.K. Berezhetskaya, A.M. Davydov, I.A. Kossyi, V.I. Nefedov, K.A.Sarksyan, N.K. Kharchev. J. Physics: Conf. Series, 907, 012022 (2017). DOI: 10.1088/1742-6596/907/1/012022
- P.G. Sennikov, R.A. Kornev, A.I. Shishkin. Plasma Chem. Plasma Proces., 37 (4), 997 (2017). DOI: 10.1007/s11090-017-9821-y
- A.V. Vodopyanov, S.V. Golubev, D.A. Mansfeld, P.G. Sennikov, Yu.N. Drozdov. Rev. Sci. Instrum., 82 (6), 063503 (2011). DOI: 10.1063/1.3599618
- A.L. Vicharev, V.B. Gildenburg, S.V. Golubev, B.G. Eremin, O.A. Ivanov, A.G. Litvak, A.N. Stepanov, A.D. Yunakovskii. Sov. Phys. JETP, 67 (4), 724 (1988)
- D. Mansfeld, S. Sintsov, N. Chekmarev, A. Vodopyanov. J. CO2 Utilization, 40, 101197 (2020). DOI: 10.1016/j.jcou.2020.101197
- S.V. Sintsov, E.I. Preobrazhensky, R.A. Kornev, A.V. Vodopyanov, D.A. Mansfeld. Instrum. Experiment. Techniq., 65 (3), 419 (2022). DOI: 10.1134/S0020441222030058
- S. Sintsov, D. Mansfeld, E. Preobrazhensky, R. Kornev, N. Chekamrev, M. Viktorov, A. Ermakov, A. Vodopyanov. Plasma Chem. Plasma Proces., 42 (6), 1237 (2022). DOI: 10.1007/s11090-022-10280-0
- R.A. Kornev, P.G. Sennikov, L.V. Shabarova, A.I. Shishkin, T.A. Drozdova, S.V. Sintsov. High Energy Chem., 53 (3), 246 (2019). DOI: 10.1134/S001814391903010X
- R.A. Kornev, P.G. Sennikov, S.V. Sintsov, A.V. Vodopyanov. Plasma Chem. Plasma Proces., 37 (6), 1655 (2017). DOI: 10.1007/s11090-017-9846-2
- V.B. Gildenburg, A.V. Kim. Phys. Plasmas, 6 (4), 496 (1980)
- Y.Y. Brodskii, I.P. Venediktov, S.V. Golubev, V.G. Zorin, I.A. Kossyi. Tech. Phys. Lett., 10 (2), 77 (1984)
- S.I. Gritsinin, I.A. Kossyi, V.P. Silakov, N.M. Tarasova. J. Phys. D: Appl. Phys., 29 (4), 1032 (1996). DOI: 10.1088/0022-3727/29/4/013
- V. Avetisov, S. Gritsinin, A. Kim, I. Kossy, A. Kostinski, M. Misakyan, A. Nadezhdinski, N. Tarasova, A. Khusnutdinov. Sov. J. Experiment. Theor. Phys. Lett., 51, 348 (1990)
- K.V. Aleksandrov, V.L. Bychkov, I.I. Esakov, L.P. Grachev, K.V. Khodataev, A.A. Ravaev, I.B. Matveev. IEEE Transactions on Plasma Science, 37 (12), 2293 (2009). DOI: 10.1109/TPS.2009.2026175
- K. Khodataev. 46th AIAA Aerospace Sciences Meeting and Exhibit (Reno, Nevada, 2008), DOI: 10.2514/6.2008-1405
- A.A. Skovoroda, A.V. Zvonkov. J. Experiment. Theor. Phys., 92 (1), 78 (2001). DOI: 10.1134/1.1348463
- Y.C. Hong, H.S. Uhm, S.C. Cho. J. Korean Phys. Society, 53 (6), 3220 (2008). DOI: 10.3938/jkps.53.3220
- G.M. Batanov, S.I. Gritsinin, I.A. Kossyi. J. Phys. D: Appl. Phys., 35 (20), 2687 (2002). DOI: 10.1088/0022-3727/35/20/332
- S.I. Gritsinin, I.A. Kossyi, V.P. Silakov, N.M. Tarasova. J. Phys. D: Appl. Phys., 29 (4), 1032 (1996). DOI: 10.1088/0022-3727/29/4/013
- B. Chaudhury, J.-P. Boeuf, G.Q. Zhu. Phys. Plasmas, 17|,(12), 123505 (2010). DOI: 10.1063/1.3517177
- S. Sintsov, A. Vodopyanov, D. Mansfeld. AIP Advances, 9 (10), 105009 (2019). DOI: 10.1063/1.5115326
- S. Sintsov, K. Tabata, D. Mansfeld, A. Vodopyanov, K. Komurasaki. J. Phys. D: Appl. Phys., 53 (30), 305203 (2020). DOI: 1361-6463/ab8999
- Yu.P. Rayzer, Fizika gazovogo razryada (Nauka, M., 1992) (in Russian)
- T. Barmashova, A.V. Sidorov, A.V. Vodopyanov, A. Luchinin, A. Murzanev, S. Razin, A. Stepanov, A. Veselov. IEEE Transactions on Terahertz Science and Technology, 1--1 (2022). DOI: 10.1109/TTHZ.2022.3164546
- T. Barmashova, A. Luchinin, A. Murzanev, A. Sidorov, A. Stepanov, A. Veselov, A. Vodopyanov. J. Phys.: Conf. Series, 1697 (1), 012220 (2020). DOI: 10.1088/1742-6596/1697/1/012220
- S.V. Sintsov, A.V. Vodopyanov, M.E. Viktorov, M.V. Morozkin, M.Yu. Glyavin. J. Infrared, Millimeter, and Terahertz Waves, 41 (6), 711 (2020). DOI: 10.1007/s10762-020-00694-2
- A.V. Sidorov, M.Y. Glyavin, S.V. Golubev, S.V. Razin, S.V. Sintsov, A.P. Veselov, A.V. Vodopyanov. J. Phys.: Conf. Series, 1400 (7), 077032 (2019). DOI: 10.1088/1742-6596/1400/7/077032
- J.S. Hummelt, M.A. Shapiro, R.J. Temkin. Phys. Plasmas, 19 (12), 123509 (2012). DOI: 10.1063/1.4773037
- Y. Oda, K. Komurasaki, K. Takahashi, A. Kasugai, K. Sakamoto. J. Appl. Phys., 100 (11), 113307 (2006). DOI: 10.1063/1.2399899
- X.-M. Zhu, Y.-K. Pu. J. Phys. D: Appl. Phys., 43 (40), 403001 (2010). DOI: 10.1088/0022-3727/43/40/403001
- K.P. Savkin, E.M. Oks, D.A. Sorokin, A.Y. Yushkov, G.Y. Yushkov, S.V. Sintsov, A.V. Vodopyanov. Plasma Sourc. Sci. Technol., 31 (1), 015009 (2022). DOI: 10.1088/1361-6595/ac309a
- M. Morhavc, V. Matouvsek. Digital Signal Processing, 19 (3), 372 (2009). DOI: 10.1016/j.dsp.2008.06.002
- J. Borkowska-Burnecka, W. Zyrnicki, M. We na, P. Jamroz. Intern. J. Spectroscopy, 2016, 1 (2016). DOI: 10.1155/2016/7521050
- N. Konjevic, M. Ivkovic, N. Sakan. Spectrochimica Acta Part B: Atomic Spectroscopy, 76, 16--26 (2012). DOI: 10.1016/j.sab.2012.06.026
- L. Yang, X. Tan, X. Wan, L. Chen, D. Jin, M. Qian, G. Li. J. Appl. Phys., 115 (16), 163106 (2014). DOI: 10.1063/1.4873960
- M. Morhavc. Nucl. Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 559 (1), 119--123 (2006). DOI: 10.1016/j.nima.2005.11.129
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.