The features of acetylene pyrolysis in an atmosphere of inert gases in a cyclic compression reactor
Vasiljev S. A.
1, Ezdin B.S.
1, Yanshole L. V.
2, Pakharukov Yu. V.
3, Kalyada V.V.
1, Shabiev F. K.
31Novosibirsk State University, Novosibirsk, Russia
2International Tomography Center, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
3University of Tyumen, Tyumen, Russia
Email: s.vasilev3@nsu.ru, bse@nsu.ru, lucy@tomo.nsc.ru, pacharukovyu@yandex.ru, daf2@mail.ru, faridshab@mail.ru
The pyrolysis of acetylene was studied experimentally in a cyclic compression reactor in an atmosphere of buffer inert gases (argon, neon, helium). A significant difference in the thermodynamic conditions for the complete pyrolysis of the precursor for various buffer gases was revealed. The reaction products of acetylene in neon and helium contained up to 20% of the part soluble in organic solvents. The study of the ethanol-soluble part of the product using time-of-flight mass spectrometry with matrix-assisted laser desorption/ionization made it possible to distinguish even and odd branches in the spectrum of substances by the number of carbon atoms. A mechanism is proposed for the formation of larger particles by merging smaller ones. Keywords: cyclic compression reactor, acetylene pyrolysis, buffer inert gas, growth mechanism, carbon nanoparticles.
- H. Filik, A.A. Avan, Arab. J. Chem., 13, 6092 (2020). DOI: 10.1016/j.arabjc.2020.05.009
- R. Kour, S. Arya, S.-J. Young, V. Gupta, P. Bandhoria, A. Khosla, J. Electrochem. Soc., 167, 037555 (2020). DOI: 10.1149/1945-7111/ab6bc4
- D. Maiti, X. Tong, X. Mou, K. Yang, Front. Pharmacol., 9, 1401 (2019). DOI: 10.3389/fphar.2018.01401
- M.S. Vlaskin, V.M. Zaichenko, P.V. Belov, A.V. Grigorenko, A.I. Kurbatova, A.V. Eremin, V.E. Fortov, Theor. Found. Chem. Eng., 55, 315 (2021). DOI: 10.1134/S0040579521020135
- Yu.V. Fedoseeva, K.M. Popov, G.A. Pozdnyakov, V.N. Yakovlev, B.V. Sen'kovskiy, L.G. Bulusheva, A.V. Okotrub, J. Struct. Chem., 58, 1196 (2017). DOI: 10.1134/S002247661706018X
- B. Ezdin, Yu. Pakharukov, V. Kalyada, F. Shabiev, A. Zarvin, D. Yatsenko, R. Safargaliev, A. Ichshenko, V. Volodin, Catal. Today, 397, 249 (2022). DOI: 10.1016/j.cattod.2021.09.024
- B. Ezdin, D. Yatsenko, V. Kalyada, A. Zarvin, A. Ichshenko, A. Nikiforov, P. Snytnikov, Data Brief, 28, 104868 (2020). DOI: 10.1016/j.dib.2019.104868
- B.S. Ezdin, V.V. Kalyada, D.A. Yatsenko, A.V. Ischenko, V.A. Volodin, A.A. Shklyaev, Powder Technol., 394, 996 (2021). DOI: 10.1016/j.powtec.2021.09.032
- B.S. Ezdin, S.A. Vasiljev, D.A. Yatsenko, V.E. Fedorov, M.N. Ivanova, V.V. Kalyada, Yu.V. Pakharukov, F.K. Shabiev, A.E. Zarvin, Sib. Fiz. Zh., 17 (3), 29 (2022) (in Russian). DOI: 10.25205/2541-9447-2022-17-3-29-46
- A.I. Bechina, E.V. Kustova, Vestnik St. Petersb. Univ. Math., 52, 81 (2019). DOI: 10.3103/S1063454119010035
- V.N. Komarov, O.Yu. Polyanskii, Uch. Zap. TsAGI, 9 (5), 120 (1978) (in Russian)
- J.B. Mann, Atomic structure calculations II. Hartree-Fock wave functions and radial expectation values: hydrogen to lawrencium, report (New Mexico, 1968)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.