Effect of the Dislocation Dipoles with Different Arms on the Graphene Deformation Behavior: molecular dynamics
Akhunova A.Kh. 1,2, Baimova J. A. 1,2
1Institute of Metal Superplasticity Problems, Russian Academy of Sciences, Ufa, Bashkortostan, Russia
2Ufa University of Science and Technology, Ufa, Russia
Email: akhunova.a.a@gmail.com, julia.a.baimova@gmail.com

PDF
The molecular dynamics simulation is used to analyze the features of the deformation behavior and the process of fracture of graphene with dislocation dipoles with different arm. Moreover, the wrinkling of graphene during deformation is taken into account, which greatly reduces the strength of graphene. It has been established that an increase in temperature slightly affects the mechanical properties of graphene with dislocation dipoles, in contrast to defect-free graphene and graphene with a Stone-Wales defect. It is shown that a change in the distance between dislocations in a dipole does not significantly affect the elastic modulus and graphene strength. However, the presence of dislocation dipoles can affect graphene wrinkling during stretching. Keywords: graphene, dislocation dipole, mechanical properties, molecular dynamics.
  1. J.B. Wu, M.L. Lin, X. Cong, H.N. Liu, P.H. Tan. Chem. Society Rev., 47, 1822 (2018). DOI:10.1039/c6cs00915h
  2. P.M. Tailor, R.J. Wheatley, N.A. Besley. Carbon, 113, 299 (2017). DOI:10.1016/j.carbon.2016.11.059
  3. M. Braun, F. Arca, M. Ariza. Intern. J. Mechan. Sci., 209, 106702 (2021). DOI:10.1016/j.ijmecsci.2021.106702
  4. A. Cao, B. Shen, Q. Lin, S. Chen, Z. Huang, Z. Ji, Z. Zhang. Computational Mater. Sci., 173, 109423 (2020). DOI:10.1016/j.commatsci.2019.109423
  5. S. Ajori, A. Ameri, R. Ansari. Superlattices and Microstructures, 142, 106526 (2020). DOI:10.1016/j.spmi.2020.106526
  6. Y. Fu, T. Ragab, C. Basaran. Mater. Sci., 124, 142 (2016). DOI:10.1016/j.commatsci.2016.07.022
  7. T.H. Liu, C.W. Pao, C.C. Chang. Carbon, 50, 3465 (2012). DOI:10.1016/j.carbon.2012.03.012
  8. T.A. Oliveira, P.V. Silva, V. Meunier, E.C. Girao. Carbon, 201, 222 (2023). DOI:10.1016/j.carbon.2022.08.079
  9. H. Wang, Y. Wang, B. Bai, X. Guo, J. Xue. Appl. Surf. Sci., 531, 147347 (2020). DOI:10.1016/j.apsusc.2020.147347
  10. M. Shakeri. Superlattices and Microstructures, 128, 116 (2019). DOI:10.1016/j.spmi.2019.01.019
  11. F. Wang, X. Xu, J. Mao. Diamond Related Mater., 109, 108037 (2020). DOI:10.1016/j.diamond.2020.108037
  12. A.K. Manna, S.J. Gilbert, S.R. Joshi, T. Komesu, S. Varma. Physica E, 143, 115329 (2022). DOI:10.1016/j.physe.2022.115329
  13. A.I. Podlivaev, L.A. Openov. FTT, 57 (4), 802 (2015). (in Russian)
  14. S.T. Skowron, I.V. Lebedeva, A.M. Popov, E. Bichoutskaia. Chem. Society Rev., 44, 3143 (2015). DOI: 10.1039/c4cs00499j
  15. M. Ariza, M. Ortiz. J. Mechan. Phys. Solids, 58, 710 (2010). DOI:10.1016/j.jmps.2010.02.008
  16. Y. Yao, S. Wang, J. Bai, R. Wang. Physica E, 84, 340 (2016). DOI:10.1016/j.physe.2016.08.004
  17. M. Lazar. Phys. Lett. A, 377, 423 (2013). DOI:10.1016/j.physleta.2012.12.005
  18. L. Xu, N. Wei, Y. Zheng. Nanotechnology, 24, 505703 (2013). DOI:10.1088/0957-4484/24/50/505703
  19. Y.X. Du, L.J. Zhou, J.G. Guo. Mater. Chem. Phys., 288, 126412 (2022). DOI:10.1016/j.matchemphys.2022.126412
  20. M. Torkaman-Asadi, M. Kouchakzadeh. Comput. Mater. Sci., 210, 111457 (2022). DOI:10.1016/j.commatsci.2022.111457
  21. M.A.N. Dewapriya, R.K.N.D. Rajapakse. J. Appl. Mechan., 81, 081010 (2014). DOI:10.1115/1.4027681
  22. K.K. Gupta, S. Dey. In: Lecture Notes on Multidisciplinary Industrial Engineering, ed. by R.G. Narayanan, S.N. Joshi, U.S. Dixit. (Springer, Singapore, 2019), p. 793. DOI:10.1007/978-981-32-9072-3_66
  23. K.K. Gupta, T. Mukhopadhyay, A. Roy, S. Dey. J. Mater. Sci. Technol., 50, 44 (2020). DOI:10.1016/j.jmst.2020.03.004
  24. L.D. Landau. Phys. Z. Sowjet Union, 11, 56 (1937)
  25. R. Peierls. Helv. Phys. Acta, 7, 81 (1934)
  26. N.D. Mermin. Phys. Rev., 176, 250 (1968)
  27. D. Nelson, L. Peliti. J. Physique, 48, 1085 (1987). DOI:10.1051/jphys:019870048070108500
  28. A. Fasolino, J.H. Los, M.I. Katsnelson. Nature Mater., 6, 858 (2007). DOI:10.1038/370nmat2011
  29. V.B. Shenoy, C.D. Reddy, A. Ramasubramaniam, Y.W. Zhang. Phys. Rev. Lett., 101, 245501 (2008). DOI:10.1103/physrevlett.101.245501
  30. S. Deng, V. Berry. Mater. Today, 19, 197 (2016). DOI:10.1016/j.mattod.2015.10.002
  31. C. Wang, L. Lan, Y. Liu, H. Tan. Comput. Mater. Sci., 77, 250 (2013). DOI:10.1016/j.commatsci.2013.04.051
  32. T. Zhang, X. Li, H. Gao. J. Mechan. Phys. Solids, 67, 2 (2014). DOI:10.1016/j.jmps.2014.02.005
  33. J.A. Baimova, S.V. Dmitriev, K. Zhou. Physica Status Solidi (b), 249, 1393 (2012). DOI:10.1002/pssb.201084224
  34. J.A. Baimova, S.V. Dmitriev, K. Zhou, A.V. Savin. Phys. Rev. B, 86, 035427 (2012). DOI:10.1103/physrevb.86.035427
  35. H. Qin, Y. Sun, J.Z. Liu, M. Li, Y. Liu. Nanoscale, 9, 4135 (2017). DOI:10.1039/c6nr07911c
  36. J.N. Grima, S. Winczewski, L. Mizzi, M.C. Grech, R. Cauchi, R. Gatt, D. Attard, K.W. Wojciechowski, J. Rybicki. Tailoring Adv. Mater., 27, 1455 (2014). DOI:10.1002/ 387adma.201404106
  37. S. Zhao, Y. Zhang, J. Yang, S. Kitipornchai. Carbon, 168, 135 (2020). DOI:10.1016/j.carbon.2020.06.054
  38. S. Zhao, Y. Zhang, J. Yang, S. Kitipornchai. J. Mater. Sci. Technol., 120, 196 (2022). DOI:10.1016/j.jmst.2021 392.12.042
  39. H.S. Seung, D.R. Nelson. Phys. Rev. A, 38, 1005 (1988). DOI:10.1103/physreva.38.1005
  40. G.-D. Lee, E. Yoon, K. He, A.W. Robertson, J.H. Warner. Nanoscale, 6, 14836 (2014). DOI:10.1039/c4nr04718d
  41. Y. Kawamura, Y. Ohta. Comp. Mater. Sci., 205, 111224 (2022). DOI:10.1016/j.commatsci.2022.111224
  42. E. Ertekin, D.C. Chrzan, M.S. Daw. Phys. Rev. B, 79, 155421 (2009). DOI:10.1103/physrevb.79.155421
  43. Y. Liu, B. I. Yakobson. Nano Lett., 10, 2178 (2010)
  44. S. Chen. Buckling and Topological Defects in Graphene and Carbon Nanotubes (UC Berkeley Electronic Theses and Dissertations, University of California, Berkeley, 2012), https://escholarship.org/uc/item/59v245r8
  45. S.J. Stuart, A.B. Tutein, J.A. Harrison. Chem. Phys., 112, 6472 (2000). DOI:10.1063/1.481208
  46. C. Lee, X. Wei, J.W. Kysar, J. Hone. Science, 321, 385 (2008). DOI:10.1126/science.1157996
  47. G. Zhang, H. Liu, Y. Chen, H. Qin, Y. Liu. J. Mechan. Phys. Solids, 169, 105080 (2022). DOI:10.1016/j.jmps.2022.105080
  48. M. Chen, S. Quek, Z. Sha, C. Chiu, Q. Pei, Y. Zhang. Carbon, 85, 135 (2015). DOI:10.1016/j.carbon.2014.12.092
  49. K. Zhou, B. Liu. In book: Molecular Dynamics Simulation, ed. by E. Thompson. (Elsevier Inc., U.S., 2022), p. 129. DOI:10.1016/b978-0-12-816419-8.00010-6
  50. K.A. Krylova, L.R. Safina, S.A. Shcherbinin, J.A. Baimova. Methodology for Materials, 15, 4038 (2022). DOI:10.3390/ma15114038
  51. B. Mortazavi, S. Ahzi. Carbon, 63, 460 (2013). DOI:10.1016/j.carbon.2013.07.017
  52. N. Jing, Q. Xue, C. Ling, M. Shan, T. Zhang, X. Zhou, Z. Jiao. RSC Advances, 2, 9124 (2012). DOI:10.1039/c2ra21228e
  53. A.I.C. Mihaila, T. Susi, J. Kotakoski. Scientific Reports, 2 9124, (2019). DOI:10.1038/s41598-019-49565-4
  54. T. Susi, J.C. Meyer, J. Kotakoski. Nature Rev. Phys., 1, 397 (2019). DOI:10.1038/s42254-019-0058-y
  55. O. Dyck, S. Yeom, S. Dillender, A.R. Lupini, M. Yoon, S. Jesse. Carbon, 201, 212 (2023). DOI:10.1016/j.carbon.2022.09.006
  56. H. Zhao, N.R. Aluru. J. Appl. Phys., 108, 064321 (2010). DOI:10.1063/1.3488620
  57. C.S. Ruiz-Vargas, H.L. Zhuang, P.Y. Huang, A.M. van der Zande, S. Garg, P.L. McEuen, D.A. Muller, R.G. Hennig, J. Park. Nano Lett., 11, 2259 (2011). DOI:10.1021/nl200429f

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru