Processes of ablation and structures growth under the action of femtosecond laser pulses on the gallium surface in an ammonia medium
Kochuev D. A. 1, Chernikov A. S. 1, Abramov D. V. 1, Voznesenskaya A. A. 1, Chkalov R. V. 1, Khorkov K. S. 1
1Stoletovs Vladimir state university, Vladimir, Russia
Email: _b_@mail.ru, awraam@mail.ru, khorkov@vlsu.ru

PDF
In this paper, we present the results of processing metallic gallium in an ammonia vapor medium at 2 bar pressure by femtosecond laser pulses. The influence of the ammonia concentration and the mode of laser beam scanning on the result of laser action is considered. It has been established that an increase in the concentration of ammonia vapor and a change in the scanning regime lead to a radical change in the laser ablation process. A decrease in the scanning speed leads to the cessation of the ablation process and the development of the nitridation process of the gallium surface, accompanied by the formation of columnar structures up to 12 mm long and about 100 μm in diameter. The synthesized nanoparticles and structures were studied using scanning electron microscopy, Raman spectroscopy, and X-ray analysis. Keywords: laser ablation, gallium nitride, gallium nitride nanoparticles manufacturing, ablative synthesis of gallium nitride nanoparticles.
  1. M.V. Shugaev, C. Wu, O. Armbryster, A. Naghilou, N. Brouwer, D.S. Ivanov, T.J.-Y. Derrien, N.M. Bulgakova, W. Kautek, B. Rethfeld, L.V. Zhigilei. MRS Bulletin, 41 (12), 960 (2016). DOI: 10.1557/mrs.2016.274
  2. A.A. Ionin, S.I. Kudryashov, A.A. Samokhin. Phys. Usp., 60, 149 (2017). DOI: 10.3367/UFNe.2016.09.037974
  3. R. Fedorov, F. Lederle, M. Li, V. Olszok, K. Wobbeking, W. Schade, E.G. Hubner. Chem. Plus. Chem., 86 (9), 1231 (2021). DOI: 10.1002/cplu.202100118
  4. J. Hao, S. Xu, B. Gao, L. Pan. Nanomaterials, 10 (3), 439 (2020). DOI: 10.3390/nano10030439
  5. J. Perriere, C. Boulmer-Leborgne, R. Benzerga, S. Tricot. J. Phys. D: Appl. Phys., 40 (22), 7069 (2007). DOI: 10.1088/0022-3727/40/22/031
  6. V.V. Osipov, V.V. Platonov, A.M. Murzakaev, E.V. Tikhonov, A.I. Medvedev. Kvant. elektron., 52 (8), 739 (2022) (in Russian)
  7. J.L.H. Chau, C.Y. Chen, M.C. Yang, K.L. Lin, S. Sato, T. Nakamura, C.C. Yang, C.W. Cheng. Mater. Lett., 65 (4), 804 (2011). DOI: 10.1016/j.arabjc.2013.04.014
  8. A.V. Kabashin, M. Meunier. J. Appl. Phys., 94 (12), 7941 (2003). DOI: 10.1063/1.1626793
  9. A.A. Popov, G.V. Tikhonowski, P.V. Shakhov, E.A. Popova-Kuznetsova, G.I. Tselikov, R.I. Romanov, A.M. Markeev, S.M. Klimentov, A.V. Kabashin. Nanomaterials, 12 (10), 1672 (2022). DOI: 10.3390/nano12101672
  10. K.S. Khorkov, D.V. Abramov, D.A. Kochuev, S.M. Arakelian, V.G. Prokoshev. Phys. Proced., 83, 182 (2016). DOI: 10.1016/j.phpro.2016.08.152
  11. P.A. Danilov, A.A. Ionin, S.I. Kudryashov, A.A. Rudenko, I.N. Saraeva, D.A. Zayarny. Las. Phys. Lett., 14 (5), 056001 (2017). DOI: 10.1088/1612-202X/aa6225
  12. B.N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, A. Tunnermann. Appl. Phys. A, 63 (2), 109 (1996). DOI: 10.1007/BF01567637
  13. S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B.N. Chichkov, B. Wellegehausen, H. Welling. JOSA B, 14 (10), 2716 (1997). DOI: 10.1364/JOSAB.14.002716
  14. G.N. Makarov. Phys. Usp., 56, 643 (2013). DOI: 10.3367/UFNe.0183.201307a.0673
  15. A.S. Chernikov, D.A. Kochuev, A.A. Voznesenskaya, A.V. Egorova, K.S. Khorkov. J. Phys.: Conf. Ser., 2077 (1), 012002 (2021). DOI: 10.1088/1742-6596/2077/1/012002
  16. G.I. Tselikov, G.A. Ermolaev, A.A. Popov, G.V. Tikhonowski, D.A. Panova, A.S. Taradin, A.A. Vyshnevyy, A.V. Syuy, S.M. Klimentov, S.M. Novikov, A.B. Evlyukhin, A.V. Kabashin, A.V. Arsenin, K.S. Novoselov, V.S. Volkov. Proc. Natl. Acad. Sci. USA, 119 (39), e2208830119 (2022). DOI: 10.1073/pnas.2208830119
  17. J. Simon, V.P.N. Nampoori, M. Kailasnath. Optik, 195, 163168 (2019). DOI: 10.1016/j.ijleo.2019.163168
  18. D.A. Kochuev, K.S. Khorkov, A.V. Ivashchenko, V.G. Prokoshev, S.M. Arakelian. J. Phys. Conf. Ser., 951 (1), 012015 (2018). DOI: 10.1088/1742-6596/951/1/012015
  19. P. Hazdra, S. Popelka. Phys. Status Solidi A, 214 (4), 1600447 (2017). DOI: 10.1002/pssa.201600447
  20. K. Li, P.L. Evans, C.M. Johnson. IEEE Trans. Power Electron., 33 (6), 5262 (2017). DOI: 10.1109/TPEL.2017.2730260
  21. V.K. Pandey, C.M. Tan. IEEE Trans. Nucl. Sci., 68 (6), 1319 (2021). DOI: 10.1109/TNS.2021.3072654
  22. B.J. Baliga. Semicond. Sci. Technol., 28 (7), 074011 (2013). DOI: 10.1088/0268-1242/28/7/074011
  23. R. Quay. Gallium Nitride Electronics (Springer, Heidelberg, 2008) DOI: 10.1007/978-3-540-71892-5
  24. C.M. Furqan, M.U. Khan, M. Awais, F. Jiang, J. Bae, A. Hassan, H.S. Kwok. Sci. Rep., 11 (1), 1 (2021). DOI: 10.1038/s41598-021-89956-0
  25. D. Han, Y. Chen, D. Li, H. Dong, B. Xu, X. He, S. Sang. Sens. Actuators B Chem., 379, 133197 (2023). DOI: 10.1016/j.snb.2022.133197
  26. J. Zhou, H. Huang, M. Wang, D. Zhao, J. Yu, S. Jin, Y. Zhong, X. Chen, X. Yu, P. Liu, J. Zhao. Sens. Actuators B Chem., 345, 130360 (2021). DOI: 10.1016/J.SNB.2021.130360
  27. K. Asha, A. Sanjana, K. Narayan. In: 2018 2nd International Conference on Trends in Electronics and Informatics (Tirunelveli, India, 2018), p. 955. DOI: 10.1109/ICOEI.2018.8553909
  28. S. Cojocari, O. Ignatov, M. Jian, V. Cobzac, T. Braniste, E.V. Monaico, A. Taran, V. Nacu Int. J. Biomed. Eng. Technol. Springer, Cham (Moldova, 2021), p. 373. DOI: 10.1007/978-3-030-92328-0_49
  29. N. Wazzan, K.A. Soliman, W.S. Abdel Halim. J. Mol. Model., 25 (9), 1 (2019). DOI: 10.1007/s00894-019-4147-8
  30. M. Mishra, J. Sharan, V. Koul, O.P. Kharbanda, A. Kumar, A. Sharma, T.A. Hackett, R. Sagar, M.K. Kashyap, G. Gupta. Appl. Surf. Sci., 612, 155858 (2023). DOI: 10.1016/j.apsusc.2022.155858
  31. D.A. Kochuev, A.S. Chernikov, R.V. Chkalov, A.V. Prokhorov, K.S. Khorkov. J. Phys. Conf. Ser., 2131 (5), 052089 (2021). DOI: 10.1088/1742-6596/2131/5/052089
  32. A.S. Chernikov, D.A. Kochuev, R.V. Chkalov, A.V. Egorova, D.G. Chkalova. 2022 International Conference Laser Optics (Saint Petersburg, Russian Federation, 2022), p. 1. DOI: 10.1109/ICLO54117.2022.9840086
  33. R.R. Moskalyk. Miner. Eng., 16 (10), 921 (2003). DOI: 10.1016/j.mineng.2003.08.003
  34. P. Limao-Vieira, N.C. Jones, S.V. Hoffmann, D. Duflot, M. Mendes, A.I. Lozano, F. Ferreira da Silva, G. Garcia, M. Hoshino, H. Tanaka. J. Chem. Phys., 151 (18), 184302 (2019). DOI: 10.1063/1.5128051
  35. A. Kramida, Yu. Ralchenko, J. Reader and NIST ASD Team (2022). NIST Atomic Spectra Database (ver. 5.10), [Online]. Available: https://physics.nist.gov/asd [2022, December 29]. National Institute of Standards and Technology, Gaithersburg, MD
  36. D.A. Kochuev, A.S. Raznoschikov, R.V. Chkalov. IOP Conf. Ser.: Mater. Sci. Eng., 969 (1), 012034 (2020). DOI: 10.1088/1757-899X/969/1/012034
  37. C.C. Chen, C.C. Yeh, C.H. Chen, M.Y. Yu, H.L. Liu, J.J. Wu, K.H. Chen, L.C. Chen, J.Y. Peng, Y.F. Chen. J. Am. Chem. Soc., 123 (12), 2791 (2001). DOI: 10.1021/ja0040518
  38. E. Li, S. Song, D. Ma, N. Fu, Y. Zhang. J. Electron. Mater., 43 (5), 1379 (2014). DOI: 10.1007/s11664-014-3079-4
  39. A.S. Chernikov, D.A. Kochuev, A.A. Voznesenskaya, A.V. Egorova. J. Phys. Conf. Ser., 1942 (1), 012024 (2021). DOI: 10.1088/1742-6596/1942/1/012024
  40. D.A. Kochuev, A.F. Galkin, A.A. Voznesenskaya, K.S. Khorkov, R.V. Chkalov. Bull. Lebedev Phys. Inst., 47 (2), 372020 (2020). DOI: 10.3103/S1068335620020062
  41. Yu. Lan, J. LI, W. Wong-Ng, R.M. Derbeshi, J. Li, A. Lisfi. Micromachines, 7 (9), 121 (2016). DOI: 10.3390/mi7090121

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru