Processes of ablation and structures growth under the action of femtosecond laser pulses on the gallium surface in an ammonia medium
Kochuev D. A.
1, Chernikov A. S.
1, Abramov D. V.
1, Voznesenskaya A. A.
1, Chkalov R. V.
1, Khorkov K. S.
11Stoletovs Vladimir state university, Vladimir, Russia
Email: _b_@mail.ru, awraam@mail.ru, khorkov@vlsu.ru
In this paper, we present the results of processing metallic gallium in an ammonia vapor medium at 2 bar pressure by femtosecond laser pulses. The influence of the ammonia concentration and the mode of laser beam scanning on the result of laser action is considered. It has been established that an increase in the concentration of ammonia vapor and a change in the scanning regime lead to a radical change in the laser ablation process. A decrease in the scanning speed leads to the cessation of the ablation process and the development of the nitridation process of the gallium surface, accompanied by the formation of columnar structures up to 12 mm long and about 100 μm in diameter. The synthesized nanoparticles and structures were studied using scanning electron microscopy, Raman spectroscopy, and X-ray analysis. Keywords: laser ablation, gallium nitride, gallium nitride nanoparticles manufacturing, ablative synthesis of gallium nitride nanoparticles.
- M.V. Shugaev, C. Wu, O. Armbryster, A. Naghilou, N. Brouwer, D.S. Ivanov, T.J.-Y. Derrien, N.M. Bulgakova, W. Kautek, B. Rethfeld, L.V. Zhigilei. MRS Bulletin, 41 (12), 960 (2016). DOI: 10.1557/mrs.2016.274
- A.A. Ionin, S.I. Kudryashov, A.A. Samokhin. Phys. Usp., 60, 149 (2017). DOI: 10.3367/UFNe.2016.09.037974
- R. Fedorov, F. Lederle, M. Li, V. Olszok, K. Wobbeking, W. Schade, E.G. Hubner. Chem. Plus. Chem., 86 (9), 1231 (2021). DOI: 10.1002/cplu.202100118
- J. Hao, S. Xu, B. Gao, L. Pan. Nanomaterials, 10 (3), 439 (2020). DOI: 10.3390/nano10030439
- J. Perriere, C. Boulmer-Leborgne, R. Benzerga, S. Tricot. J. Phys. D: Appl. Phys., 40 (22), 7069 (2007). DOI: 10.1088/0022-3727/40/22/031
- V.V. Osipov, V.V. Platonov, A.M. Murzakaev, E.V. Tikhonov, A.I. Medvedev. Kvant. elektron., 52 (8), 739 (2022) (in Russian)
- J.L.H. Chau, C.Y. Chen, M.C. Yang, K.L. Lin, S. Sato, T. Nakamura, C.C. Yang, C.W. Cheng. Mater. Lett., 65 (4), 804 (2011). DOI: 10.1016/j.arabjc.2013.04.014
- A.V. Kabashin, M. Meunier. J. Appl. Phys., 94 (12), 7941 (2003). DOI: 10.1063/1.1626793
- A.A. Popov, G.V. Tikhonowski, P.V. Shakhov, E.A. Popova-Kuznetsova, G.I. Tselikov, R.I. Romanov, A.M. Markeev, S.M. Klimentov, A.V. Kabashin. Nanomaterials, 12 (10), 1672 (2022). DOI: 10.3390/nano12101672
- K.S. Khorkov, D.V. Abramov, D.A. Kochuev, S.M. Arakelian, V.G. Prokoshev. Phys. Proced., 83, 182 (2016). DOI: 10.1016/j.phpro.2016.08.152
- P.A. Danilov, A.A. Ionin, S.I. Kudryashov, A.A. Rudenko, I.N. Saraeva, D.A. Zayarny. Las. Phys. Lett., 14 (5), 056001 (2017). DOI: 10.1088/1612-202X/aa6225
- B.N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, A. Tunnermann. Appl. Phys. A, 63 (2), 109 (1996). DOI: 10.1007/BF01567637
- S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B.N. Chichkov, B. Wellegehausen, H. Welling. JOSA B, 14 (10), 2716 (1997). DOI: 10.1364/JOSAB.14.002716
- G.N. Makarov. Phys. Usp., 56, 643 (2013). DOI: 10.3367/UFNe.0183.201307a.0673
- A.S. Chernikov, D.A. Kochuev, A.A. Voznesenskaya, A.V. Egorova, K.S. Khorkov. J. Phys.: Conf. Ser., 2077 (1), 012002 (2021). DOI: 10.1088/1742-6596/2077/1/012002
- G.I. Tselikov, G.A. Ermolaev, A.A. Popov, G.V. Tikhonowski, D.A. Panova, A.S. Taradin, A.A. Vyshnevyy, A.V. Syuy, S.M. Klimentov, S.M. Novikov, A.B. Evlyukhin, A.V. Kabashin, A.V. Arsenin, K.S. Novoselov, V.S. Volkov. Proc. Natl. Acad. Sci. USA, 119 (39), e2208830119 (2022). DOI: 10.1073/pnas.2208830119
- J. Simon, V.P.N. Nampoori, M. Kailasnath. Optik, 195, 163168 (2019). DOI: 10.1016/j.ijleo.2019.163168
- D.A. Kochuev, K.S. Khorkov, A.V. Ivashchenko, V.G. Prokoshev, S.M. Arakelian. J. Phys. Conf. Ser., 951 (1), 012015 (2018). DOI: 10.1088/1742-6596/951/1/012015
- P. Hazdra, S. Popelka. Phys. Status Solidi A, 214 (4), 1600447 (2017). DOI: 10.1002/pssa.201600447
- K. Li, P.L. Evans, C.M. Johnson. IEEE Trans. Power Electron., 33 (6), 5262 (2017). DOI: 10.1109/TPEL.2017.2730260
- V.K. Pandey, C.M. Tan. IEEE Trans. Nucl. Sci., 68 (6), 1319 (2021). DOI: 10.1109/TNS.2021.3072654
- B.J. Baliga. Semicond. Sci. Technol., 28 (7), 074011 (2013). DOI: 10.1088/0268-1242/28/7/074011
- R. Quay. Gallium Nitride Electronics (Springer, Heidelberg, 2008) DOI: 10.1007/978-3-540-71892-5
- C.M. Furqan, M.U. Khan, M. Awais, F. Jiang, J. Bae, A. Hassan, H.S. Kwok. Sci. Rep., 11 (1), 1 (2021). DOI: 10.1038/s41598-021-89956-0
- D. Han, Y. Chen, D. Li, H. Dong, B. Xu, X. He, S. Sang. Sens. Actuators B Chem., 379, 133197 (2023). DOI: 10.1016/j.snb.2022.133197
- J. Zhou, H. Huang, M. Wang, D. Zhao, J. Yu, S. Jin, Y. Zhong, X. Chen, X. Yu, P. Liu, J. Zhao. Sens. Actuators B Chem., 345, 130360 (2021). DOI: 10.1016/J.SNB.2021.130360
- K. Asha, A. Sanjana, K. Narayan. In: 2018 2nd International Conference on Trends in Electronics and Informatics (Tirunelveli, India, 2018), p. 955. DOI: 10.1109/ICOEI.2018.8553909
- S. Cojocari, O. Ignatov, M. Jian, V. Cobzac, T. Braniste, E.V. Monaico, A. Taran, V. Nacu Int. J. Biomed. Eng. Technol. Springer, Cham (Moldova, 2021), p. 373. DOI: 10.1007/978-3-030-92328-0_49
- N. Wazzan, K.A. Soliman, W.S. Abdel Halim. J. Mol. Model., 25 (9), 1 (2019). DOI: 10.1007/s00894-019-4147-8
- M. Mishra, J. Sharan, V. Koul, O.P. Kharbanda, A. Kumar, A. Sharma, T.A. Hackett, R. Sagar, M.K. Kashyap, G. Gupta. Appl. Surf. Sci., 612, 155858 (2023). DOI: 10.1016/j.apsusc.2022.155858
- D.A. Kochuev, A.S. Chernikov, R.V. Chkalov, A.V. Prokhorov, K.S. Khorkov. J. Phys. Conf. Ser., 2131 (5), 052089 (2021). DOI: 10.1088/1742-6596/2131/5/052089
- A.S. Chernikov, D.A. Kochuev, R.V. Chkalov, A.V. Egorova, D.G. Chkalova. 2022 International Conference Laser Optics (Saint Petersburg, Russian Federation, 2022), p. 1. DOI: 10.1109/ICLO54117.2022.9840086
- R.R. Moskalyk. Miner. Eng., 16 (10), 921 (2003). DOI: 10.1016/j.mineng.2003.08.003
- P. Limao-Vieira, N.C. Jones, S.V. Hoffmann, D. Duflot, M. Mendes, A.I. Lozano, F. Ferreira da Silva, G. Garcia, M. Hoshino, H. Tanaka. J. Chem. Phys., 151 (18), 184302 (2019). DOI: 10.1063/1.5128051
- A. Kramida, Yu. Ralchenko, J. Reader and NIST ASD Team (2022). NIST Atomic Spectra Database (ver. 5.10), [Online]. Available: https://physics.nist.gov/asd [2022, December 29]. National Institute of Standards and Technology, Gaithersburg, MD
- D.A. Kochuev, A.S. Raznoschikov, R.V. Chkalov. IOP Conf. Ser.: Mater. Sci. Eng., 969 (1), 012034 (2020). DOI: 10.1088/1757-899X/969/1/012034
- C.C. Chen, C.C. Yeh, C.H. Chen, M.Y. Yu, H.L. Liu, J.J. Wu, K.H. Chen, L.C. Chen, J.Y. Peng, Y.F. Chen. J. Am. Chem. Soc., 123 (12), 2791 (2001). DOI: 10.1021/ja0040518
- E. Li, S. Song, D. Ma, N. Fu, Y. Zhang. J. Electron. Mater., 43 (5), 1379 (2014). DOI: 10.1007/s11664-014-3079-4
- A.S. Chernikov, D.A. Kochuev, A.A. Voznesenskaya, A.V. Egorova. J. Phys. Conf. Ser., 1942 (1), 012024 (2021). DOI: 10.1088/1742-6596/1942/1/012024
- D.A. Kochuev, A.F. Galkin, A.A. Voznesenskaya, K.S. Khorkov, R.V. Chkalov. Bull. Lebedev Phys. Inst., 47 (2), 372020 (2020). DOI: 10.3103/S1068335620020062
- Yu. Lan, J. LI, W. Wong-Ng, R.M. Derbeshi, J. Li, A. Lisfi. Micromachines, 7 (9), 121 (2016). DOI: 10.3390/mi7090121
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.