Physics of the Solid State
Volumes and Issues
Effect of an Array of Submicron Magnetic Dots on Magnetization, Critical Current, and the Structure of Vortex Configurations in HTS
Maksimova A. N. 1, Rudnev I. A.1, Kashurnikov I. A.1, Moroz A. N.1
1National Research Nuclear University “MEPhI”, Moscow, Russia
Email: anmaksimova@mephi.ru

PDF
A vortex lattice in a high-temperature superconductor (HTS) with an array of submicron magnetic dots on the surface has been studied by the Monte Carlo method within the framework of a three-dimensional model of a layered high-temperature superconductor. The adjustment of the vortex lattice to an array of magnetic points was observed - ordered states arising in the process of remagnetization - configurations of one, two, three, or more vortex filaments fixed to a single magnetic point. The occurrence of these configurations was accompanied by peaks on the magnetization curve. The influence of the HTS anisotropy on the adjustment of the vortex lattice is analyzed. The ordered configurations of the vortex lattice are also associated with the non-monotonic nature of the dependences of the superconductor critical current on the magnetic field. The influence of temperature, magnetic moment of points, and film thickness on the critical current is investigated. With an increase in temperature and a decrease in the magnetization of magnetic points, the maximum of the critical current shifts towards a lower field. The structure of vortex filaments in the inhomogeneous field of a magnetic point is analyzed in detail. The mechanism of the influence of ordered vortex configurations on magnetization and critical current is discussed. Keywords: high-temperature superconductor, magnetization curve, Abrikosov vortices, current-voltage characteristic, ferromagnetic pinning centers, Monte Carlo method.
  1. A. Hoffmann, L. Fumagalli, N. Jahedi, J.C. Sautner, J.E. Pearson, G. Mihajlovic, V. Metlushko. Phys. Rev. B 77, 6, 060506 (2008). https://doi.org/10.1103/PhysRevB.77.060506
  2. J.E. Villegas, K.D. Smith, L. Huang, Y. Zhu, R. Morales, I.K. Schuller. Phys. Rev. B 77, 13, 134510 (2008). https://doi.org/10.1103/PhysRevB.77.134510
  3. J.I. Martin, M. Velez, J. Nogues, I.K. Schuller. Phys. Rev. Lett. 79, 10, 1929 (1997). https://doi.org/10.1103/PhysRevLett.79.1929
  4. M.M. Al-Qurainy, A. Jones, S. Rubanov, S.A. Fedoseev, I.A. Rudnev, A. Hamood, A.V. Pan. Supercond. Sci. Technol. 33, 10, 105006 (2020)
  5. I.A. Golovchanskiy, A.V. Pan, S.A. Fedoseev, M. Higgins. Appl. Surf. Sci. 311, 549 (2014).
  6. R. Sasik, T. Hwa. (2000). arXiv preprint cond-mat/0003462
  7. W.J. Yeh, B. Cheng, T. Ragsdale. J. Modern Phys. 01, 06, 364 (2010). https://doi.org/10.4236/jmp.2010.16052
  8. K.Yu. Guslienko. Appl. Phys. Lett. 89, 2, 022510 (2006). https://doi.org/10.1063/1.2221904
  9. V.V. Moshchalkov, D.S. Golubovic, M. Morelle. Comptes Rendus Phys. 7, 1, 86 (2006). https://doi.org/10.1016/j.crhy.2005.12.004
  10. A. Hoffmann, P. Prieto, V. Metlushko, I.K. Schuller. J. Supercond. Nov. Magn. 25, 7, 2187 (2012). https://doi.org/10.1007/s10948-012-1647-5
  11. J. del Valle, A. Gomez, E.M. Gonzalez, J.L. Vicent. (2016). arXiv preprint arXiv:1607.08416
  12. J. Wei, Y.J. Wu. Math. Phys. 62, 4, 041509 (2021). https://doi.org/10.1063/5.0028065
  13. B. Oripov, S.M. Anlage. Phys. Rev. E 101, 3, 033306 (2020). https://doi.org/10.1103/PhysRevE.101.033306
  14. M.V. Milovsevic, F.M. Peeters. Phys. Rev. B 68, 2, 024509 (2003). https://doi.org/10.1103/PhysRevB.68.024509
  15. B. Niedzielski, J. Berakdar. Phys. Status Solidi B 257, 7, 1900709 (2020). https://doi.org/10.1002/pssb.201900709
  16. R.M. Menezes, E. Sardella, L.R.E. Cabral, C.C. de Souza Silva. J. Phys.: Condens. Matter 31, 17, 175402 (2019). https://doi.org/10.1088/1361-648X/ab035a
  17. L. Peng, C. Cai, Y. Zhu, L. Sang. J. Low Temper. Phys. 197, 5-6, 402 (2019). https://doi.org/10.1007/s10909-019-02227-1
  18. A.E. Koshelev. Phys. Rev. B 71, 17, 174507 (2005). https://doi.org/10.1103/PhysRevB.71.174507
  19. A.E. Koshelev. Phys. Rev. B 48, 2, 1180 (1993). https://doi.org/10.1103/PhysRevB.48.1180
  20. A.E. Koshelev. Phys. Rev. Lett. 83, 1, 187 (1999). https://doi.org/10.1103/PhysRevLett.83.187
  21. A.E. Koshelev. Phys. Rev. B 68, 9, 094520 (2003). https://doi.org/10.1103/PhysRevB.68.094520
  22. A.V. Samokhvalov, A.S. Mel'nikov, A.I. Buzdin. Phys. Rev. B 85, 18, 184509 (2012). https://doi.org/10.1103/PhysRevB.85.184509
  23. J.R. Clem, M.W. Coffey. Phys. Rev. B 42, 10, 6209 (1990). https://doi.org/10.1103/PhysRevB.42.6209
  24. J.R. Clem, M.W. Coffey, Z. Hao. Phys. Rev. B 44, 6, 2732 (1991). https://doi.org/10.1103/PhysRevB.44.2732
  25. W. E. Lawrence, S. Doniach. Proceed. LT 12 Conf. Kyoto 1970, 361 (1971)
  26. I.A. Rudnev, D.S. Odintsov, V.A. Kashurnikov. Phys. Lett. A 372, 21, 3934 (2008). https://doi.org/10.1016/j.physleta.2008.02.065
  27. V.A. Kashurnikov, A.N. Maksimova, I.A. Rudnev. Phys. Solid State 56, 5, 894 (2014). https://doi.org/10.1134/s1063783414050126
  28. V.A. Kashurnikov, A.N. Maksimova, I.A. Rudnev, D.S. Odintsov. J. Phys.: Conf. Ser. 1238, 1, 012016 (2019). https://doi.org/10.1088/1742-6596/1238/1/012016
  29. A.N. Maksimova, V.A. Kashurnikov, A.N. Moroz, I.A. Rudnev. Phys. Solid State 63, 5, 728 (2021). https://doi.org/10.1134/S1063783421050115
  30. V.A. Kashurnikov, A.N. Maksimova, I.A. Rudnev, D.S. Odintsov. J. Siberian Federal University. Math. Phys. 11, 2, 227 (2018). https://doi.org/10.17516/1997-1397-2018-11-2-227-230
  31. S. Tyagi, Y.Y. Goldschmidt. Phys. Rev. B 70, 2, 024501 (2004). https://doi.org/10.1103/PhysRevB.70.024501
  32. Y.Y. Goldschmidt, S. Tyagi. Phys. Rev. B 71, 1, 014503 (2005). https://doi.org/10.1103/PhysRevB.71.014503
  33. G. Blatter, M.V. Feigel'man, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur. Rev. Modern Phys. 66, 4, 1125 (1994). https://doi.org/10.1103/RevModPhys.66.1125
  34. M.V. Milovsevic, S.V. Yampolskii, F.M. Peeters. Phys. Rev. B 66, 17, 174519 (2002). https://doi.org/10.1103/PhysRevB.66.174519

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru