Physics of the Solid State
Volumes and Issues
Surface morphology and structural properties of GaTe crystals after ion-plasma treatment
Zimin S. P. 1,2, Amirov I. I. 1, Tivanov M. S. 3, Kolesnikov N. N. 4, Korolik O. V. 3, Lyashenko L. S. 3, Zhyhulin D. V.5, Mazaletskiy L. A. 2,1, Vasilev S. V. 1, Savenko O. V. 2
1Valiev Institute of Physics and Technology of RAS, Yaroslavl Branch, Yaroslavl, Russia
2Demidov State University, Yaroslavl, Russia
3Faculty of Physics, Belarusian State University, Minsk, Belarus
4Osipyan Institute of Solid State Physics RAS, Chernogolovka, Russia
5Joint Stock Company "INTEGRAL"- Holding Managing Company, Minsk, Belarus
Email: zimin@uniyar.ac.ru, ildamirov@yandex.ru, michael.tivanov@gmail.com, nkolesn@issp.ac.ru, olga_zinchuk@tut.by, Lyashenko@bsu.by, Boolvinkl@yandex.ru, vasilevsvhep@mail.ru, savenko.oleg92@mail.ru

PDF
The effect of ion-plasma treatment on the physical properties of the surface of GaTe crystals is investigated. Gallium telluride crystals were grown by vertical zone melting under the pressure of an inert argon gas of 10.0 MPa at a temperature of 1000oC and a zone displacement velocity of 9 mm/hr. The treatment was carried out in argon plasma in a high-density low-pressure radio frequency (RF) inductively coupled plasma reactor at an argon ion energy of 100-200 eV for 15-120 s. Using scanning electron microscopy methods, it was shown that the formation of nano- and submicron structures of various architectures (nanohillocks, nanocones, droplet structures) occurred on the surface during processing. It is shown that the sputtering processes are accompanied by enrichment of the near-surface layer with metal atoms and a decrease in oxygen content. The formation of nano- and submicron gallium droplets on the surface has been proved by X-ray diffractometry. The analysis of the Raman scattering spectra showed a decrease in the oxide phases of tellurium after plasma treatment. It is established that modification of the GaTe surface leads to suppression of specular optical reflection in the range of 0.4-6.2 eV. Keywords: gallium telluride, ion-plasma treatment, nanostructures, X-ray diffractometry, Raman scattering, reflection spectra.
  1. A. Yamamoto, A. Syouji, T. Goto, E. Kulatov, K. Ohno, Y. Kawazoe, K. Uchida, N. Miura. Phys. Rev. B: Condens. Matter. 64, 3, 035210 (2001)
  2. M. Liu, S. Yang, M. Han, S. Feng, G.G. Wang, L. Dang, B. Zou, Y. Cai, H. Sun, J. Yu, J.C. Han, Z. Liu. Small 17, 21, 2007909 (2021)
  3. J.J. Fonseca, S. Tongay, M. Topsakal, A.R. Chew, A.J. Lin, C. Ko, A.V. Luce, A. Salleo, J. Wu, O. Dubon. Adv. Mater. 28, 30, 6465 (2016)
  4. J. Susoma, J. Lahtinen, M. Kim, J. Riikonen, H. Lipsanen. AIP Adv. 7, 1, 015014 (2017)
  5. Q. Chen, Y. Chen, J. Wang, M. Liu, Z. Chen. Crystals 12, 5, 627 (2022)
  6. T. Singha, M. Karmakar, P. Kumbhakar, C.S. Tiwary, P.K. Datta. Appl. Phys. Lett. 120, 2, 021101 (2022)
  7. A.V. Kosobutsky, S.Yu. Sarkisov. Phys. Solid State 60, 9, 1686 (2018)
  8. K. Lai, S. Ju, H. Zhu, H. Wang, H. Wu, B. Yang, E. Zhang, M. Yang, F. Li, S. Cui, X. Deng, Z. Han, M. Zhu, J. Dai. Commun. Phys. 5, 143 (2022)
  9. J.F. Sanchez-Royo, J. Pellicer-Porres, A. Segura, V. Munoz-Sanjose, G. Tobias, P. Ordejon, E. Canadell, Y. Huttel. Phys. Rev. B 65, 11, 115201 (2002)
  10. N.N. Kolesnikov, E.B. Borisenko, D.N. Borisenko, A.V. Timonina. J. Cryst. Growth 365, 1, 59 (2013)
  11. Q. Zhao, T. Wang, Y. Miao, F. Ma, Y. Xie, X. Ma, Y. Gu, J. Li, J. He, B. Chen, S. Xi, L. Xu, H. Zhen, Z. Yin, J. Li, J. Ren, W. Jie. Phys. Chem. Chem. Phys. 18, 18719 (2016)
  12. Xi. Wang, Xu. Wang, H. Zou, Y. Fu, X. He, L. Zhang. Chin. Phys. B 30, 1, 01640 (2021)
  13. Y.W. Yu, M. Ran, S.S. Zhou, R.Y. Wang, F.Y. Zhou, H.Q. Li, L. Gan, M.Q. Zhu, T.Y. Zhai. Adv. Funct. Mater. 29, 23, 1901012 (2019)
  14. L. Gouskov, A. Gouskov. Phys. Status Solidi 51, K213 (1979)
  15. S. Huang, Y. Tatsumi, X. Ling, H. Guo, Z. Wang, G. Watson, A.A. Puretzky, D.B. Geohegan, J. Kong, J. Li, T. Yang, R. Saito, M.S. Dresselhaus. ACS Nano 10, 9, 8964 (2016)
  16. H. Wang, M. Chen, M. Zhu, Y. Wang, B. Dong, X. Sun, X. Zhang, S. Cao, X. Li, J. Huang, L. Zhang, W. Liu, D. Sun, Y. Ye, K. Song, J. Wang, Y. Han, T. Yang, H. Guo, C. Qin, L. Xiao, J. Zhang, J. Chen, Z. Han, Z. Zhang. Nature Commun. 10, 2302 (2019)
  17. F. Liu, H. Shimotani, H. Shang, T. Kanagasekaran, V. Zolyomi, N. Drummond, V.I. Fal'ko, K. Tanigaki. ACS Nano 8, 1, 752 (2014)
  18. K.C. Mandal, R.M. Krishna, T.C. Hayes, P.G. Muzykov, S. Das, T.S. Sudarshan. In IEEE Nucl. Sci. Symp. 58, 4, 3719 (2010). DOI:10.1109/NSSMIC.2010.5874507
  19. X. Xia, X. Li, H. Wang. J. Semicond. 41, 072902 (2020)
  20. Z. Wang, K. Xu, Y. Li, X. Zhan, M. Safdar, Q. Wang, F. Wang, J. He. ACS Nano 8, 5, 4859 (2014)
  21. P. Hu, J. Zhang, M. Yoon, X.-F. Qiao, X. Zhang, W. Feng, P. Tan, W. Zheng, J. Liu, X. Wang, J. Idrobo, D. Geohegan, K. Xiao. Nano Res. 7, 5, 694 (2014)
  22. D.N. Bose, S. Pal. Phys. Rev. B: Condens. Matter Mater. Phys. 63, 23, 235321 (2001)
  23. S. Pal, D. Bose. Solid State Commun. 97, 8, 725 (1996)
  24. S. Siddique, C.C. Gowda, R. Tromer, S. Demiss, A.R. Singh Gautam, O.E. Femi, P. Kumbhakar, D.S. Galvao, A. Chandra, C.S. Tiwary. ACS Appl. Nano Mater. 4, 5, 4829 (2021)
  25. L.-C. Tien, Y.-C. Shih. Nanomaterials 11, 3, 778 (2021)
  26. F. Bondino, S. Duman, S. Nappini, G. D'Olimpio, C. Ghica, T.O. Mentes, F. Mazzola, M.C. Istrate, M. Jugovac, M. Vorokhta, S. Santoro, B. Gurbulak, A. Locatelli, D.W. Boukhvalov, A. Politano. Adv. Funct. Mater. 32, 41, 2205923 (2022)
  27. V.P. Hoang Huy, I.T. Kim, J. Hur. Nanomaterials 12, 19, 3362 (2022)
  28. G. Yu, Z. Liu, X.M. Xie, X. Ouyang, G.Z. Shen. J. Mater. Chem. C 2, 30, 6104 (2014)
  29. H. Cai, B. Chen, G. Wang, E. Soignard, A. Khosravi, M. Manca, X. Marie, S. L.Y. Chang, B. Urbaszek, S. Tongay. Adv. Mater. 29, 8, 1605551 (2017)
  30. L.-C. Tien, Y.-C. Shih, C.-Y. Chen, Y.-T. Huang, R.-S. Chen. J. Alloys Comp. 876, 160195 (2021)
  31. S.P. Saeb, M. Varga. In: ASDAM 2022 / Eds J. Marek et al. IEEE 2022, 111-113 (2022). ISBN 978-1-6654-6977-7
  32. I. Levchenko, K. Ostrikov. J. Phys. D 40, 8, 2308 (2007)
  33. S. Zimin, E. Gorlachev, I. Amirov. Inductively Coupled Plasma Sputtering: Structure of IV-VI Semiconductors. In: Encyclopedia of Plasma Technology. 1st ed. CRC Press, N. Y. (2017) P. 679-691. https://doi.org/10.1081/E-EPLT-120053966 https://www.routledgehandbooks.com/doi/10.1081/E-EPLT-120053966
  34. S.P. Zimin, E.S. Gorlachev, I.I. Amirov, V.V. Naumov, R. Juskenas, M. Skapas, E. Abramof, P.H.O. Rappl. Semicond. Sci. Technol. 34, 9, 095001 (2019)
  35. S.P. Zimin, E.S. Gorlachev, D.A. Mokrov, I.I. Amirov, V.V. Naumov, V.F. Gremenok, R. Juskenas, M. Skapas, W.Y. Kim, K. Bente, Y.-D. Chung. Semicond. Sci. Technol. 32, 7, 075014 (2017)
  36. S. Rasool, K. Saritha, K.T. Ramakrishna Reddy, M.S. Tivanov, V.F. Gremenok, S.P. Zimin, A.S. Pipkova, L.A. Mazaletskiy, I.I. Amirov. Mater. Res. Exp. 7, 1, 016431 (2020)
  37. P. Sigmund. Elements of sputtering theory. In: Nanofabrication by Ion-Beam Sputtering / Eds T. Som, D. Kanjilal. Pan Stanford Publishing (2013). P. 1-40. https://doi.org/10.4032/9789814303767
  38. D.R. Lide. CRC Handbook of Chemistry and Physics. 76th ed. CRC Press, N. Y. (1995) P. 3-320
  39. T. Li, J. Feng, L. Liang, W. Sun, X. Wang, J. Wu, P. Xu, M. Liu, D. Ma. ACS Omega 5, 16, 9550 (2020)
  40. J. Dong, K.-P. Gradwohl, Y. Xu, T. Wang, B. Zhang, B. Xiao, C. Teichert, W. Jie. Photon. Res. 7, 5, 518 (2019)
  41. I.G. Sorina, C. Tien, E.V. Charnaya, Yu.A. Kumzerov, L.A. Smirnov. Phys. Solid State 40, 8, 1407 (1998)
  42. M. Yarema, M. Worle, M.D. Rossell, R. Erni, R. Caputo, L. Protesescu, K.V. Kravchyk, D.N. Dirin, K. Lienau, F. Rohr, A. Schilling, M. Nachtegaal, M.V. Kovalenko. J. Am.Chem. Soc. 136, 35, 12422 (2014)
  43. M. Kotha, T. Murray, D. Tuschel, S. Gallis. Nanomaterials 9, 11, 1510 (2019)
  44. J.C. Champarnaud-Mesjard, S. Blanchandin, P. Thomas, A. Mirgorodsky, T. Merle-Mejean, B. Frit. J. Phys. Chem. Solids 61, 9, 1499 (2000)
  45. M. Smirnov, V. Kuznetsov, E. Roginskii, J. Cornette, M. Dutreilh-Colas, O. Noguera, O. Masson, P. Thomas. J. Phys.: Condens.Matter. 30, 47, 475403 (2018)
  46. B.M. Janzen, P. Mazzolini, R. Gillen, A. Falkenstein, M. Martin, H. Tornatzky, J. Maultzsch, O. Bierwagen, M.R. Wagner. J. Mater. Chem. C. 9, 7, 2311 (2021)
  47. N.T. Hoang, J.H. Lee, T.H. Vu, S. Cho, M.J. Seong. Sci. Rep. 11, 21202 (2021)
  48. J.C. Irwin, B.P. Clayman, D.G. Mead. Phys. Rev. B 19, 4, 2099 (1979)
  49. C. Tatsuyama, Y. Watanabe, C. Hamaguchi, J. Nakai. J. Phys. Soc. Jpn 29, 1, 150 (1970)
  50. V. Grasso, G. Mondio, G. Saitta. Phys. Lett. A 46, 2, 95 (1973)
  51. Y. Sun, J. Evans, F. Ding, N. Liu, W. Liu, Y. Zhang, S. He. Opt. Exp. 23, 15, 20115 (2015).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru