Andrianov A.V
1, Aleshin A.N.
1, Abolmasov S.N.1,2, Terukov E.I.
1,3,2, Zakhar'in A.O.1
1Ioffe Institute, St. Petersburg, Russia
2R&D Center of Thin Film Technologies in Energetics under the Ioffe Institute LLC, St. Petersburg, Russia
3St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
Email: alex.andrianov@mail.ioffe.ru, aleshin@transport.ioffe.ru, s.abolmasov@hevelsolar.com, Eug.terukov@mail.ioffe.ru, alex.zaharin@mail.ioffe.ru
Studies on the generation of terahertz (THz) radiation in p-n-heterostructures based on a-Si:H/c-Si upon their photoexcitation by a femtosecond titanium-sapphire laser with a wavelength of 800 nm are presented. The properties of observed THz radiation allow to explain its nature by excitation of fast photocurrent of nonequilibrium charge carriers created in the region of the potential barrier under femtosecond interband photoexcitation of the structure. The fast photocurrent, in turn, emits THz electromagnetic waves. The waveforms and amplitude spectra of the observed THz radiation reflect the dynamics of photoexcited charge carriers in the structures. The intensity of THz radiation observed in the studied p-n-heterostructures based on a-Si:H/c-Si is comparable to that generated in n-InAs crystals, which are widely used as emitters in systems of THz time-domain spectroscopy. Therefore, a-Si:H/c-Si p-n-heterostructures can be used as THz emitters for need of THz spectroscopy. Keywords: femtosecond laser photoexcitation, heterostructures, fast photocurrent, terahertz electromagnetic radiation.
- Yun-Shik Lee. Principles of Terahertz Science and Technology. Springer Science + Business Media, LLC (2009). 340 p
- J. Neu, C.A. Schmuttenmaer. J. Appl. Phys. 124, 231101 (2018)
- Terahertz Spectroscopy and Imaging / Eds K.-E. Peiponen, J.A. Zeitler, M. Kuwata-Gonokami. Springer-Verlag, Berlin, Heidelberg (2013). 641 p
- A.V. Andrianov, A.N. Aleshin, L.B. Matyushkin. Pis'ma v ZhETF 109, 30 (2019). (in Russian)
- Terahertz Optoelectronics / Ed. K. Sakai. Springer-Verlag, Berlin (2005). 387 p
- V.L. Malevich, P.A. Ziaziukia, R. Norkus, V. Pacebutas, I. Nevinskas, A. Krotkus. Sensors 21, 4067 (2021)
- A.E. Yachmenev, D.V. Lavrukhin, I.A. Glinsky, N.V. Zenchenko, Y.G. Goncharov, I.E. Spektor, R.A. Khabibullin, T. Otsuki, D.S. Ponomarev. Opt. Eng. 59, 061608 (2019)
- C. Song, P. Wang, Y. Qian, G. Zhou, R. Notzel. Opt. Express 28, 25751 (2020)
- G. Ramakrishnan, G.K.P. Ramanandan, A.J.L. Adam, M. Xu, N. Rumar, R.W.A. Hendrikx, P.C.M. Planken. Opt. Express 21, 16784 (2013)
- L. Xu, X.-C. Zhang, D.H. Auston, B. Jalali. Appl. Phys. Lett. 59, 3357 (1991)
- E. Terukov, A. Kosarev,A. Abramov, E. Malchukova. From 11% Thin Film to 23% Heterojunction Technology (HJT) PV Cell: Research, Development and Implementation Related 1600x1000 mm2 PV Modulesin Industrial Production. IntechOpen, Solar Panels and Photovoltaic Materials (2018). Ch. 5
- A.S. Abramov, D.A. Andronikov, S.N. Abolmasov, E.I. Terukov. Silicon Heterojunction Technology: A Key to High Efficiency Solar Cells at Low Cost. In: High-Efficient Low-Cost Photovoltaics / Eds V. Petrova-Koch, R. Hezel, A. Goetzberger. Springer Nature Switzerland AG (2020). Ch. 7. P. 113-132
- A.V. Andrianov, A.N. Aleshin, V.N. Truhin, A.V. Bobylev. J. Phys. D 44, 265101 (2011)
- A.V. Andrianov, A.N. Aleshin, S.N. Abolmasov, E.I. Terukov, E.V. Beregulin. Pis'ma v ZhETF 116 (825), (2022). (in Russian)
- J.F. Ward, J.K. Guha. Appl. Phys. Lett. 30, 276 (1977)
- S.L. Chuang, S. Smitt-Rink, B.I. Greene, P.N. Saeta, A.F.J. Levi. Phys. Rev. Lett. 68, 102 (1992)
- Y. Kadoya, T. Matsui, A. Takazato, J. Kitagawa. Joint Proc. of 32nd Int. Conf. Infrared and Millimeter Waves and the 15th Int. Conf. on Terahertz Electronics (02-09 September 2007) Cardiff, UK. P. 987-988
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.