Influence of the corona discharge on the formation of the diffractive holographic gratings in the As40S60-xSex films
A.M. Nastas1, M.S. Iovu1, A.M. Prisacar 1, G.M. Triduh 1, V.D. Prilepov 2, A.L. Tolstik 3, I.V. Stashkevich 3
1Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, Republic of Moldova
2Moldovan State University, Chisinau, Republic of Moldova
3Belarusian State University, Minsk, Republic of Belarus
Email: nastas_am@rambler.ru
The influence of the corona discharge on the holographic recording and the subsequence chemical etching of the recording holographic gratings in the Cr/As40S60-xSex thin film structures was investigated. It was established that applied of the positive corona discharge leads to the increase of the holographic sensitivity during the recording in the As-S-Se films, as well as to the amplification of the diffraction efficiency of the recording gratings and of the relief-phase diffractive gratings obtaining in the result of the consecutive chemical etching. Among the investigated films of the As40S60-xSex system, the best results on the application of the Argon laser irradiation (488 nm) was obtaining for the composition As40S39Se21. Applied of the corona discharge bring to the increase of the holographic sensitivity more than up two order, and of the diffraction efficiency about three order in the respect of the of the ordinary recording. Reciprocally was reached a amplification of the diffraction efficiency of the relief diffraction gratings formed in the result of the sequent chemical etching up to 30%. Keywords: chalcogenide vitreous semiconductors, holographic diffractive grating, corona discharge, diffraction efficiency, selective etching.
- A. Chirita, T. Galstian, M. Caraman, V. Prilepov, O. Korshak, I. Andries. J. Optoelectron. Advan. Mater. Rapid Commun., 7 (3), 293 (2013)
- E.F. Venger, A.V. Melnichuk, A.V. Stronsky. Fotostimulirovanye processy v hal'kogenidnyh stekloobraznykh poluprovodnikah i ikh prakticheskoe primenenie (Akademper, Kiev, 2007), p. 285. (in Russian)
- A.M. Nastas, M.S. Iovu, I.N. Agishev, I.V. Gavrusenok, E.A. Melnikova, I.V. Stashkevitch, A.L. Tolstik. J. Belarusian State University Physics, 3, 4 (2021). URL: https://doi.org/10.33581/2520224320213000
- A.M. Nastas, A.M. Andriesh, V.V. Bivol, A.M. Prisakar, G.M. Tridukh. Tech. Phys., 54 (2), 305 (2009). DOI: 10.1134/S1063784209020236
- I. Bodurov, T. Yovcheva, I. Vlaeva, A. Viraneva, R. Todorov, G. Spassov, S. Sainov. J. Phys.: Conf. Ser., 398, 012053 (2012). DOI: 10.1088/1742-6596/398/1/012053
- J. Dikova, I. Vlaeva, Tz. Babeva, T. Yovcheva, S. Sainov. Op. Laser. Engin., 50 (6), 838 (2012). DOI: 10.1016/j.optlaseng.2012.01.014
- I. Vlaeva, R. Todorov, I. Bodurov, T. Yovcheva, S. Sainov. Nanoscien. Nanotechn., 12 eds. E. Balabanova, E. Mileva. Sofia, 113 (2012)
- A.V. Stronski, M. Vl ek, P.E. Shepeliavyi, A. Sklena, S.A. Kostyukevich. Semicond. Phys., Quant. Electr. Optoelectron., 2 (1), 111(1999)
- A.V. Stronski, M. Vlcek, S.A. Kostyukevich, V.M. Tomchuk, E.V. Kostyukevych, S.V. Svechnikov, A.A. Kudryavtsev, N.L. Moskalenko, A.A. Koptyukh. Semic. Phys., Quant. Electr. Optoelectr., 5 (3), 284 (2002)
- J. Teteris, M. Reinfeld. J. Optoelect. Advan. Mater., 5 (5), 1355 (2003)
- J. Tasseva, R. Todorov, D. Tsankov, K. Petkov. J. Optoelectr. Advan. Mater., 9 (2), 344 (2007)
- V.A. Danko, I.Z. Indutny, V.I. Minko, P.E. Lispy, O.V. Berezneva, O.S. Litvin. FTP, 46 (4), 520 (2012) (in Russian)
- C.C. Wu, C.H. Ho, M.H. Yu, W.J. Chou. J. Alloys Comp., 427, 305 (2007)
- R. Collier, K. Burkhard, L. Lin. Optical holography (Mir, M., 1973), 686 p. (in Russian)
- Stekloobraznye poluprovodniki v fotoelektricheskikh sistemakh zapisi opticheskoj informacii, edited by A.M. Andriesh (Shtiinza, Chisinau, 1988), 128 p. (in Russian)
- A.M. Nastas, A.M. Andriesh, V.V. Bivol, A.M. Prisakar, G.M. Tridukh. Tech. Phys. Lett., 32 (1), 45 (2006)
- N. Mott, E. Davis. Elektronnye processy v nekristallicheskikh veshchestvakh (Mir, M., 1982), vol. 2, 368 p. (in Russian)
- D.M. Pai, S.W. Ing. Phys. Rev., 173 (3), 729 (1968). DOI: 10.1103/physrev.173.729
- M.D. Tabak, P. Warter. J. Phys. Rev., 173 (3), 899 (1968). DOI: 10.1103/physrev.173.899
- J.C. Knights, T.A. Davis. J. Phys. Chem. Solids, 35, 543 (1974)
- D.M. Pai, R.C. Enck. Onsager Phys. Rev., 11 (12), 5163 (1975)
- J. Frenkel. Phys. Rev., 54 (8), 647 (1938). DOI: 10.1103/physrev.54.647
- L. Onsager. Phys. Rev., 54, 554 (1938)
- A.M. Nastas, M.S. Iovu, A.M. Prisakar, G.M. Tridukh. Tech. Phys., 62 (9), 1403 (2017). DOI: 10.1134/S1063784217090195
- A.M. Nastas, M.S. Iovu, A.L. Tolstik. Opt. Spectr., 128 (2), 231 (2020). DOI: 10.1134/S0030400X20020174
- A.M. Nastas, M.S. Iovu, A.M. Prisacar, A.Yu. Meshalkin, S.A. Sergeev. J. Non-Crystall. Solids, 438 (2016). http://dx.doi.org/10.1016/j.jnoncrysol.2016.02.004
- A. Kikineshi, V. Palyok, A. Mishak, I. Szabo, D.L. Beke. Funct. Mater., 6 (3), 413 (1999)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.