Trajectory analysis in a collector with multistage energy recovery for a DEMO prototype gyrotron. Part III. Influence of the spent electron beam parameters
Louksha O. I. 1, Zuev A. S.2, Malkin A. G.1, Semenov E. S.2, Trofimov P. A.1, Glyavin M. Yu.2
1Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
2Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: louksha@rphf.spbstu.ru

PDF
The influence of the spent electron beam parameters on the possibilities of multistage energy recovery in the prototype gyrotron developed for the DEMO project is determined. The characteristics of electrodes and magnetic coils in a collector with four-stage recovery were optimized considering the distributions of electrons' coordinates and velocities obtained as a result of calculating the electron-wave interaction in the cavity. In the trajectory analysis in the collector, a sectioned electron beam was used to suppress the negative influence of the bundles of a toroidal solenoid used to create an azimuthal magnetic field. The possibility of achieving the total efficiency of the gyrotron of approximately 78% was shown, which is close to the maximum total efficiency with ideal separation of electron fractions with different energies, with the current of electrons reflected from the collector not exceeding 1% of the total current of the electron beam. Keywords: Microwave electronics, gyrotron, electron beam, energy recovery.
  1. H.G. Kosmahl. Proc. IEEE, 70 (11), 1325 (1982). DOI: 10.1109/PROC.1982.12481
  2. K. Sakamoto, M. Tsuneoka, A. Kasugai, T. Imai, T. Kariya, K. Hayashi, Y. Mitsunaka. Phys. Rev. Lett., 73 (26), 3532 (1994). DOI: 10.1103/PhysRevLett.73.3532
  3. M.Y. Glyavin, A.N. Kuftin, N.P. Venediktov, V.E. Zapevalov. Int. J. Infrared Millimeter Waves, 18, 2129 (1997). DOI: 10.1007/BF02678255
  4. M. Thumm. J. Infrared Millimeter Terahertz Waves, 41 (1), 1 (2020). DOI: 10.1007/s10762-019-00631-y
  5. V.N. Manuilov, M.V. Morozkin, O.I. Luksha, M.Y. Glyavin. Infrared Physics and Technology, 91, 46 (2018). DOI: 10.1016/j.infrared.2018.03.024
  6. M.V. Morozkin, M.Y. Glyavin, G.G. Denisov, A.G. Luchinin. Int. J. Infrared Millimeter Waves, 29 (11), 1004 (2008). DOI: 10.1007/s10762-008-9408-z
  7. I.Gr. Pagonakis, J.P. Hogge, S. Alberti, K.A. Avramides, J.L. Vomvoridis. IEEE Trans. Plasma Sci., 36 (2), 469 (2008). DOI: 10.1109/TPS.2008.917943
  8. O.I. Louksha, P.A. Trofimov. Tech. Phys. Lett., 41 (9), 884 (2015). DOI: 10.1134/S1063785015090230
  9. C. Wu, I.G. Pagonakis, K.A. Avramidis, G. Gantenbein, S. Illy, M. Thumm, J. Jelonnek. Phys. Plasmas, 25 (3), 033108 (2018). DOI: 10.1063/1.5016296
  10. B. Ell, C. Wu, G. Gantenbein, S. Illy, M. Misko, I.G. Pagonakis, J. Weggen, M. Thumm, J. Jelonnek. IEEE Trans. Electron Devices, 70 (3), 1299 (2023). DOI: 10.1109/TED.2023.3234885
  11. O.I. Louksha, P.A. Trofimov. Proc. 18th Int. Vacuum Electronics Conf., IVEC 2017 (London, United Kingdom, 2017), p. 1. DOI: 10.1109/IVEC.2017.8289518
  12. O.I. Louksha, P.A. Trofimov. Tech. Phys., 64 (12), 1889 (2019). DOI: 10.1134/S1063784219120156
  13. D.V. Kas'yanenko, O.I. Louksha, B. Piosczyk, G.G. Sominsky, M. Thumm. Radiophys. Quantum Electron, 47 (5-6), 414 (2004). DOI: 10.1023/B:RAQE.0000046315.10190.1c
  14. O. Louksha, B. Piosczyk, G. Sominski, M. Thumm, D. Samsonov. IEEE Trans. Plasma Sci., 34 (3), 502 (2006). DOI: 10.1109/TPS.2006.875779
  15. O.I. Louksha, P.A. Trofimov, V.N. Manuilov, M. Yu. Glyavin. Tech. Phys., 66 (1), 118 (2021). DOI: 10.1134/S1063784221010138
  16. O. I. Louksha, P. A. Trofimov, V. N. Manuilov, M. Yu. Glyavin. Tech. Phys., 66 (8), 992 (2021). DOI: 10.1134/S1063784221070082
  17. M. Glyavin, V. Manuilov, M. Morozkin. Proc. 43rd Int. Conf. Infrared, Millimeter, and Terahertz Waves (Nagoya, Japan, 2018), 8510139
  18. G.G. Denisov, M.Yu. Glyavin, A.P. Fokin, A.N. Kuftin, A.I. Tsvetkov, A.S. Sedov, E.A. Soluyanova, M.I. Bakulin, E.V. Sokolov, E.M. Tai, M.V. Morozkin, M.D. Proyavin, V.E. Zapevalov. Rev. Scientific Instrum., 89 (8), 084702 (2018). DOI: 10.1063/1.5040242
  19. E.S. Semenov, O.P. Plankin, R.M. Rosenthal. Izvestiya VUZ Applied Nonlinear Dynamics., 23 (3), 94 (2015) (in Russian). DOI: 10.18500/0869-6632-2015-23-3-94-105
  20. E.S. Semenov, A.S. Zuev, A.P. Fokin. Information and mathematical technologies in science and management, 1 (25), 35 (2022). DOI: 10.38028/ESI.2022.25.1.003
  21. CST Studio Suite. Electromagnetic Field Simulation Software [Electronic source] Available at: https://www.3ds.com/products-services/simulia/products/cst-studio-suite/
  22. N.A. Zavol'sky, V.E. Zapevalov, M.A. Moiseev. Radiophys. Quantum Electron., 64 (3), 175 (2021). DOI: 10.1007/s11141-021-10121-8

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru