Study of magnetic iron oxide nanoparticles coated with silicon oxide by ferromagnetic method
Vazhenina I.G.
1,2, Stolyar S.V.
2,3, Tyumentseva A.V.
3, Volochaev M.N.
1, Iskhakov R.S.
1, Komogortsev S.V.
1,4, Pyankov V. F.
3, Nikolaeva E.D.
31Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
2Siberian Federal University, Krasnoyarsk, Russia
3Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
4Siberian State University of Science and Technology, Krasnoyarsk, Russia
Email: irina-vazhenina@mail.ru, stol@iph.krasn.ru, komivlann@yandex.ru, volochaev91@mail.ru, rauf@iph.krasn.ru, pyankov.vf@ksc.krasn.ru, nikolaeva-lena@mail.ru
Magnetic nanoparticles of magnetite with a size of ~8 nm synthesized with a different type of coating were studied by ferromagnetic resonance in the temperature range from 7 to 300 K. The features of the experimental temperature dependences of the parameters of the ferromagnetic resonance curve (the magnitude of the resonant field, line width and intensity) and their approximation allowed us to estimate the values of characteristic temperatures. Firstly, the value of the Vervey temperature and the dependence of its value on the type of coating were determined. Secondly, the temperature of transition of nanoparticles to the superparamagnetic state (blocking temperature) and the temperature range within which the magnetic structure of the outer shell of the magnetic nanoparticle is in the spin glass state are established Keywords: iron oxide nanoparticles, ferromagnetic resonance, superparamagnetism, blocking temperature.
- S.P. Gubin, Y.A. Koksharov, G.B. Khomutov, G.Y. Yurkov. Russ. Chem. Rev. 74, 489 (2005)
- M. Frenea-Robin, J. Marchalot. Magnetochemistry 8, 11 (2022)
- D. Ali, S. Alkahtani, Siddiqui, Alarifi, B.A. Ali. Onco. Targets. Ther. 6, 75 (2013)
- S. Murugadoss, D. Lison, L. Godderis, S. Van Den Brule, J. Mast, F. Brassinne, N. Sebaihi, P.H. Hoet. Arch. Toxicol. 91, 2967 (2017)
- D.A. Balaev, S.V. Stolyar, Y.V. Knyazev, R.N. Yaroslavtsev, A.I. Pankrats, A.M. Vorotynov, A.A. Krasikov, D.A. Velikanov, O.A. Bayukov, V.P. Ladygina, R.S. Iskhakov. Res. Phys. 35, 105340 (2022)
- S.V. Stolyar, R.N. Yaroslavtsev, A.V. Tyumentseva, S.V. Komogortsev, E.S. Tyutrina, A.T. Saitova, Y.V. Gerasimova, D.A. Velikanov, M.V. Rautskii, R.S. Iskhakov. J. Phys. Chem. C 126, 7510 (2022)
- S.V. Stolyar, D.A. Balaev, V.P. Ladygina, A.I. Pankratz, R.N. Yaroslavtsev, D.A. Velikanov, R.S. Iskhakov. Pisma ZhETF 111, 197 (2020). (in Russian)
- Y. Liu, Y. Li, X.-M. Li, T. He. Langmuir 29, 15275 (2013)
- Y.L. Raicher, V.I. Stepanov. ZhETF 102, 1409 (1992). (in Russian)
- I.S. Poperechny, Y.L. Raikher. Phys. Rev. B 93, 014441 (2016)
- S.V. Komogortsev, R.S. Iskhakov, A.D. Balaev, A.V. Okotrub, A.G. Kudashov, N.A. Momot, S.I. Smirnov. Phys. Solid State 51, 2286 (2009)
- A.R. Muxworthy, E. McClelland. Geophys. J. Int. 140, 101 (2000)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.