Luminescence of manganese and chromium ions in spinel hosts
Khaidukov N.M. 1, Brekhovskikh M.N. 1, Kirikova N. Yu. 2, Kondratyuk V.A. 2, Makhov V.N. 2
1Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
2Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: khaiduk2@gmail.com, mbrekh@igic.ras.ru, kirikovany@lebedev.ru, valentin.kondratuk@mail.ru, makhovvn@lebedev.ru

PDF
Single-phase ceramic samples of MgAl2O4, ZnAl2O4 and LiAl5O8 spinels containing manganese or chromium ions have been synthesized by a high-temperature solid-state reactions method. It has been shown that the luminescence properties of the synthesized phosphors, in particular, the appearance of intense red luminescence from Mn4+ ions, as well as the magnitude of inhomogeneous line broadening in the luminescence spectra of Mn4+ and Cr3+ ions depend on the degree of cation inversion, which provides the charge compensation for stabilizing Mn4+ ions in the octahedral sites of the spinel structures upon the substitution of Al3+ ions, simultaneously resulting in disordered spinel crystal structures. Keywords: spinel, inversion, manganese and chromium ions, red phosphor. DOI: 10.61011/EOS.2023.04.56350.56-22
  1. Q. Zhou, L. Dolgov, A.M. Srivastava, L. Zhou, Z. Wang, J. Shi, M.D. Dramicanin, M.G. Brik, M. Wu. J. Mater. Chem. C, 6, 2652 (2018). DOI: 10.1039/c8tc00251g
  2. S. Adachi. J. Lumin., 202, 263 (2018). DOI: 10.1016/j.jlumin.2018.05.053
  3. S. Adachi. ECS J. Solid State Sci. Technol., 9, 016001 (2020). DOI: 10.1149/2.0022001JSS
  4. Y.H. Kim, J. Ha, W.B. Im. J. Materials Research and Technology, 11, 181 (2021). DOI: 10.1016/j.jmrt.2021.01.011
  5. S.J. Dhoble, R. Priya, N.S. Dhoble, O.P. Pandey. J. Lumin., 36, 560 (2021). DOI: 10.1002/bio.3991
  6. M.H. Fang, G.N.A. De Guzman, Z. Bao, N. Majewska, S. Mahlik, M. Grinberg, R.S. Liu. J. Mater. Chem. C, 8, 11013 (2020). DOI: 10.1039/d0tc02705g
  7. Y. Tanabe, S. Sugano. J. Phys. Soc. Jpn., 9, 776 (1954). DOI: 10.1143/JPSJ.9.766
  8. F. Bosi, C. Biagioni, M. Pasero. Eur. J. Mineral., 3, 183 (2019). DOI: 10.1127/ejm/2019/0031-2788
  9. S.P. Feofilov, A.B. Kulinkin, N.M. Khaidukov. J. Lumin., 217, 116824 (2020). DOI: 10.1016/j.jlumin.2019.116824
  10. N.M. Khaidukov, K.S. Nikonov, M.N. Brekhovskikh, N.Yu. Kirikova, V.A. Kondratyuk, V.N. Makhov. Inorganic Materials, 58 (7), 751 (2022). DOI: 10.1134/S002016852207010X
  11. N.M. Khaidukov, M.N. Brekhovskikh, N.Yu. Kirikova, V.A. Kondratyuk, V.N. Makhov. Russ. J. Inorg. Chem., 65 (8), 1135 (2020). DOI: 10.1134/S0036023620080069
  12. N.M. Khaidukov, M.N. Brekhovskikh, N.Yu. Kirikova, V.A. Kondratyuk, V.N. Makhov. Ceram. Int., 46, 21351 (2020). DOI: 10.1016/j.ceramint.2020.05.231
  13. N. Khaidukov, A. Pirri, M. Brekhovskikh, G. Toci, M. Vannini, B. Patrizi, V. Makhov. Materials, 14 (2), 420 (2021). DOI: 10.3390/ma14020420
  14. R.D. Shannon. Acta Cryst. A, 32, 751 (1976). DOI: 10.1107/S0567739476001551
  15. D.L. Wood, G.F. Imbusch, R M. Macfarlane, P. Kisliuk, D.M. Larkin. J. Chem. Phys., 48, 5255 (1968). DOI: 10.1063/1.1668202
  16. K. Momma, F. Izumi. J. Appl. Cryst., 44, 1272 (2011). DOI: 10.1107/S0021889811038970
  17. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson. APL Materials, 1, 011002 (2013). DOI: 10.1063/1.4812323
  18. H.St.C. O'Neill, W.A. Dollase. Phys. Chem. Minerals, 20, 541 (1994). DOI: 10.1007/BF00211850
  19. S. Sugano, Y. Tanabe. J. Phys. Soc. Jpn., 13, 880 (1958). DOI: 10.1143/JPSJ.13.880
  20. R. Famery, F. Queyroux, J.-C. Gilles, P. Herpin. J. Solid State Chem., 30, 257 (1979). DOI: 10.1016/0022-4596(79)90107-5
  21. M. Kriens, G. Adiwidjaja, W. Guse, K.H. Klaska, C. Lathe, H. Saalfeld, N.Jb. Miner. Mh., 8, 344 (1996)
  22. N.M. Khaidukov, M.N. Brekhovskikh, N.Yu. Kirikova, V.A. Kondratyuk, V.N. Makhov. Russ. J. Inorg. Chem., 67 (4), 547 (2022). DOI: 10.1134/S003602362204009X
  23. N.M. Khaidukov, M.N. Brekhovskikh, N.Yu. Kirikova, V.A. Kondratyuk, V.N. Makhov. J. Lumin., 248, 118942 (2022). DOI: 10.1016/j.jlumin.2022.118942
  24. R.K. Datta, R. Roy. J. Am. Ceram. Soc., 46, 388 (1963). DOI: 10.1111/j.1151-2916.1963.tb11757.x
  25. D.E. McCumber, M.D. Sturge. J. Appl. Phys., 34, 1682 (1963). DOI: 10.1063/1.1702657
  26. D.D. Ragan, R. Gustavsen, D. Schiferl. J. Appl.Phys., 72, 5539 (1992). DOI: 10.1063/1.351951
  27. J.T. Karpick, B. Di Bartolo. Nuovo Cimento B, 7 (1), 62 (1972). DOI: 10.1007/BF02827037
  28. A.P. Vink, A. Meijerink. J. Lumin., 87-89, 601 (2000). DOI:10.1016/S0022-2313(99)00308-7
  29. M. Erdem, G. Ozen, U. Yahsi, B. Di Bartolo, J. Lumin. 158, 464 (2015). DOI: 10.1016/j.jlumin.2014.10.053
  30. D.L. Wood, G.F. Imbusch, R.M. Macfarlane, P. Kisliuk, D.M. Larkin. J. Chem. Phys., 48, 5255 (1968). DOI: 10.1063/1.1668202
  31. G.T. Pott, B.D. McNicol. J. Solid State Chem., 7, 132 (1973). DOI: 10.1016/0022-4596(73)90145-X
  32. Y. Tokida, S. Adachi. J. Appl. Phys., 112, 063522 (2012). DOI: 10.1063/1.4754517
  33. T. Abritta, N.T. Melamed, J. Maria Neto, F. De Souza Barros. J. Lumin., 18-19, 179 (1979). DOI: 10.1016/0022-2313(79)90098-X
  34. R.C. Powell, B. Di Bartolo, B. Birang, C.S. Naiman. In: Optical Properties of Ions in Crystals. Ed by H.M. Crosswhite, H.W. Moos (Interscience, New York, 1967), p. 207

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru