Khaidukov N.M.
1, Brekhovskikh M.N.
1, Kirikova N. Yu.
2, Kondratyuk V.A.
2, Makhov V.N.
21Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
2Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: khaiduk2@gmail.com, mbrekh@igic.ras.ru, kirikovany@lebedev.ru, valentin.kondratuk@mail.ru, makhovvn@lebedev.ru
Single-phase ceramic samples of MgAl2O4, ZnAl2O4 and LiAl5O8 spinels containing manganese or chromium ions have been synthesized by a high-temperature solid-state reactions method. It has been shown that the luminescence properties of the synthesized phosphors, in particular, the appearance of intense red luminescence from Mn4+ ions, as well as the magnitude of inhomogeneous line broadening in the luminescence spectra of Mn4+ and Cr3+ ions depend on the degree of cation inversion, which provides the charge compensation for stabilizing Mn4+ ions in the octahedral sites of the spinel structures upon the substitution of Al3+ ions, simultaneously resulting in disordered spinel crystal structures. Keywords: spinel, inversion, manganese and chromium ions, red phosphor. DOI: 10.61011/EOS.2023.04.56350.56-22
- Q. Zhou, L. Dolgov, A.M. Srivastava, L. Zhou, Z. Wang, J. Shi, M.D. Dramicanin, M.G. Brik, M. Wu. J. Mater. Chem. C, 6, 2652 (2018). DOI: 10.1039/c8tc00251g
- S. Adachi. J. Lumin., 202, 263 (2018). DOI: 10.1016/j.jlumin.2018.05.053
- S. Adachi. ECS J. Solid State Sci. Technol., 9, 016001 (2020). DOI: 10.1149/2.0022001JSS
- Y.H. Kim, J. Ha, W.B. Im. J. Materials Research and Technology, 11, 181 (2021). DOI: 10.1016/j.jmrt.2021.01.011
- S.J. Dhoble, R. Priya, N.S. Dhoble, O.P. Pandey. J. Lumin., 36, 560 (2021). DOI: 10.1002/bio.3991
- M.H. Fang, G.N.A. De Guzman, Z. Bao, N. Majewska, S. Mahlik, M. Grinberg, R.S. Liu. J. Mater. Chem. C, 8, 11013 (2020). DOI: 10.1039/d0tc02705g
- Y. Tanabe, S. Sugano. J. Phys. Soc. Jpn., 9, 776 (1954). DOI: 10.1143/JPSJ.9.766
- F. Bosi, C. Biagioni, M. Pasero. Eur. J. Mineral., 3, 183 (2019). DOI: 10.1127/ejm/2019/0031-2788
- S.P. Feofilov, A.B. Kulinkin, N.M. Khaidukov. J. Lumin., 217, 116824 (2020). DOI: 10.1016/j.jlumin.2019.116824
- N.M. Khaidukov, K.S. Nikonov, M.N. Brekhovskikh, N.Yu. Kirikova, V.A. Kondratyuk, V.N. Makhov. Inorganic Materials, 58 (7), 751 (2022). DOI: 10.1134/S002016852207010X
- N.M. Khaidukov, M.N. Brekhovskikh, N.Yu. Kirikova, V.A. Kondratyuk, V.N. Makhov. Russ. J. Inorg. Chem., 65 (8), 1135 (2020). DOI: 10.1134/S0036023620080069
- N.M. Khaidukov, M.N. Brekhovskikh, N.Yu. Kirikova, V.A. Kondratyuk, V.N. Makhov. Ceram. Int., 46, 21351 (2020). DOI: 10.1016/j.ceramint.2020.05.231
- N. Khaidukov, A. Pirri, M. Brekhovskikh, G. Toci, M. Vannini, B. Patrizi, V. Makhov. Materials, 14 (2), 420 (2021). DOI: 10.3390/ma14020420
- R.D. Shannon. Acta Cryst. A, 32, 751 (1976). DOI: 10.1107/S0567739476001551
- D.L. Wood, G.F. Imbusch, R M. Macfarlane, P. Kisliuk, D.M. Larkin. J. Chem. Phys., 48, 5255 (1968). DOI: 10.1063/1.1668202
- K. Momma, F. Izumi. J. Appl. Cryst., 44, 1272 (2011). DOI: 10.1107/S0021889811038970
- A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson. APL Materials, 1, 011002 (2013). DOI: 10.1063/1.4812323
- H.St.C. O'Neill, W.A. Dollase. Phys. Chem. Minerals, 20, 541 (1994). DOI: 10.1007/BF00211850
- S. Sugano, Y. Tanabe. J. Phys. Soc. Jpn., 13, 880 (1958). DOI: 10.1143/JPSJ.13.880
- R. Famery, F. Queyroux, J.-C. Gilles, P. Herpin. J. Solid State Chem., 30, 257 (1979). DOI: 10.1016/0022-4596(79)90107-5
- M. Kriens, G. Adiwidjaja, W. Guse, K.H. Klaska, C. Lathe, H. Saalfeld, N.Jb. Miner. Mh., 8, 344 (1996)
- N.M. Khaidukov, M.N. Brekhovskikh, N.Yu. Kirikova, V.A. Kondratyuk, V.N. Makhov. Russ. J. Inorg. Chem., 67 (4), 547 (2022). DOI: 10.1134/S003602362204009X
- N.M. Khaidukov, M.N. Brekhovskikh, N.Yu. Kirikova, V.A. Kondratyuk, V.N. Makhov. J. Lumin., 248, 118942 (2022). DOI: 10.1016/j.jlumin.2022.118942
- R.K. Datta, R. Roy. J. Am. Ceram. Soc., 46, 388 (1963). DOI: 10.1111/j.1151-2916.1963.tb11757.x
- D.E. McCumber, M.D. Sturge. J. Appl. Phys., 34, 1682 (1963). DOI: 10.1063/1.1702657
- D.D. Ragan, R. Gustavsen, D. Schiferl. J. Appl.Phys., 72, 5539 (1992). DOI: 10.1063/1.351951
- J.T. Karpick, B. Di Bartolo. Nuovo Cimento B, 7 (1), 62 (1972). DOI: 10.1007/BF02827037
- A.P. Vink, A. Meijerink. J. Lumin., 87-89, 601 (2000). DOI:10.1016/S0022-2313(99)00308-7
- M. Erdem, G. Ozen, U. Yahsi, B. Di Bartolo, J. Lumin. 158, 464 (2015). DOI: 10.1016/j.jlumin.2014.10.053
- D.L. Wood, G.F. Imbusch, R.M. Macfarlane, P. Kisliuk, D.M. Larkin. J. Chem. Phys., 48, 5255 (1968). DOI: 10.1063/1.1668202
- G.T. Pott, B.D. McNicol. J. Solid State Chem., 7, 132 (1973). DOI: 10.1016/0022-4596(73)90145-X
- Y. Tokida, S. Adachi. J. Appl. Phys., 112, 063522 (2012). DOI: 10.1063/1.4754517
- T. Abritta, N.T. Melamed, J. Maria Neto, F. De Souza Barros. J. Lumin., 18-19, 179 (1979). DOI: 10.1016/0022-2313(79)90098-X
- R.C. Powell, B. Di Bartolo, B. Birang, C.S. Naiman. In: Optical Properties of Ions in Crystals. Ed by H.M. Crosswhite, H.W. Moos (Interscience, New York, 1967), p. 207
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.