Moskvin A. S.
1,21Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
2M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
Email: alexander.moskvin@urfu.ru
An analysis of the optical properties of compounds based on 3d-elements provides valuable information about the electronic structure of the ground state and low-energy excitations. Thus, we show that the analysis of charge-transfer d-d excitons in the dielectric antiferromagnetic phase of cuprates and metastable low-energy electron-hole EH dimers being a result of their evolution after electron-lattice relaxation, turns out to be very fruitful not only for describing linear and nonlinear optical properties and photoinduced effects, but also to develop a promising model of charge triplets to describe the low-energy electronic structure and T-x phase diagrams of active CuO2 planes in cuprates of the T-La2CuO4 or T-Nd2CuO4 type, as well as NiO2-planes in nickelates of the RNiO2 type, and their evolution with changes in the main energy parameters. Keywords: cuprates, nickelates, charge-transfer excitons, electron-hole dimers, charge triplets. DOI: 10.61011/EOS.2023.04.56356.70-22
- J.G. Bednorz, K.A. Muller. Z. Phys. B, 64, 189 (1986). DOI: 10.1007/BF01303701
- D. Li, K. Lee, B.Y. Wang et al. Nature (London), 572, 624 (2019). DOI: 10.1038/s41586-019-1496-5
- M. Osada, Bai Yang Wang, B. Goodge, Kyuho Lee, Hyeok Yoon, K. Sakuma, Danfeng Li, M. Miura, L. Kourkoutis, H. Hwang. Nano Lett., 20, 5735-5740 (2020). DOI: 10.1021/acs.nanolett.0c01392
- M. Osada, B.Y. Wang, B.H. Goodge, S.P. Harvey, K. Lee, D. Li, L.F. Kourkoutis, H.Y. Hwang. Adv. Mater., 33(45), e2104083 (2021). DOI: 10.1002/adma.202104083
- S.W. Zeng, C.J. Li, L.E. Chow, Y. Cao, Z.T. Zhang, C.S. Tang, X.M. Yin, Z.S. Lim, J.X. Hu, P. Yang, A. Ariando. Sci. Adv., 8, eabl9927 (2022)
- A.S. Botana, F. Bernardini, A. Cano. JETP, 132, 618-627 (2021). DOI: 10.1134/S1063776121040026
- Yaoyao Ji, Junhua Liu, Lin Li et al. J. Appl. Phys., 130, 060901 (2021). DOI: 10.1063/5.0056328
- Yusuke Nomura, Ryotaro Arita. Rep. Prog. Phys., 85 052501 (2022). DOI: 10.1088/1361-6633/ac5a60
- M. Naito, Y. Krockenberger, A. Ikeda, H. Yamamoto. Physica C, 523, 28 (2016). DOI: 10.1016/j.physc.2016.02.012
- Li, Q., He, C., Si, J. et al. Commun Mater., 1, 16 (2020). DOI: 10.1038/s43246-020-0018-1
- A.S. Moskvin. FNT, 33, 314-327 (2007). [Low Temp. Phys. 33, 234 (2007)]. DOI: 10.1063/1.2719961
- A.S. Moskvin. Phys. Rev. B, 84, 075116 (2011). DOI: 10.1103/PhysRevB.84.075116
- A.S. Moskvin. J. Phys.: Condens. Matter, 25, 085601 (2013). DOI: 10.1088/0953-8984/25/8/085601
- A.S. Moskvin, Y.D. Panov. J. Supercond. Nov. Magn., 32, 61 (2019). DOI: 10.1007/s10948-018-4896-0
- A. Moskvin, Y. Panov. Condens. Matter, 6, 24 (2021). DOI: 10.3390/condmat6030024
- A.S. Moskvin, Yu.D. Panov. JMMM, 550, 169004 (2022). DOI: 10.1016/j.jmmm.2021.169004
- G.A. Sawatzky. Nature, 572, 592-593 (2019). DOI: 10.1038/d41586-019-02518-3
- M. Hepting, D. Li, C.J. Jia et al. Nature Materials, 19, 381-385 (2020). DOI: 10.1038/s41563-019-0585-z
- J. Zaanen, G.A. Sawatzky, J.W. Allen. Phys. Rev. Lett., 55, 418 (1985). DOI: 10.1103/PhysRevLett.55.418
- A.S. Moskvin. Opt. Spectrosc., 121, 467 (2016). DOI: 10.1134/S0030400X16100167)
- A.S. Moskvin, R. Neudert, M. Knupfer. J. Fink, R. Hayn. Phys. Rev. B, 65, 180512(R) (2002). DOI: 10.1103/PhysRevB.65.180512
- A.S. Moskvin, J. Malek, M. Knupfer, R. Neudert, J. Fink, R. Hayn, S.-L. Drechsler, N. Motoyama, H. Eisaki, S. Uchida. Phys. Rev. Lett., 91, 037001 (2003). DOI: 10.1103/PhysRevLett.91.037001
- R.V. Pisarev, V.V. Pavlov, A.M. Kalashnikova, A.S. Moskvin. Phys. Rev. B, 82, 224502 (2010). DOI: 10.1103/PhysRevB.82.224502
- A.S. Moskvin. Optical Materials, 90, 244-251, (2019). DOI: 10.1016/j.optmat.2019.02.033
- Moskvin, A.S. Optical Spectroscopy and Superconductivity of Cuprates (Review). Phys. Solid State 61, 693-701 (2019). https://doi.org/10.1134/S1063783419050196
- F.C. Zhang, T.M. Rice. Phys. Rev. B, 37, 3759 (1988). DOI: 10.1103/PhysRevB.37.3759
- T. Ogasawara, M. Ashida, N. Motoyama, H. Eisaki, S. Uchida, Y. Tokura, H. Ghosh, A. Shukla, S. Mazumdar, M. Kuwata-Gonokami. Phys. Rev. Lett., 85, 2204 (2000). DOI: 10.1103/PhysRevLett.85.2204
- A. Schulzgen, Y. Kawabe, E. Hanamura, A. Yamanaka, P.-A. Blanche, J. Lee, H. Sato, M. Naito, N.T. Dan, S. Uchida, Y. Tanabe, N. Peyghambarian. Phys. Rev. Lett., 86, 3164 (2001). DOI: 10.1103/PhysRevLett.86.3164
- H. Kishida, H. Matsuzaki, H. Okamoto, T. Manabe, M. Yamashita, Y. Taguchi, Y. Tokura. Nature, 405, 929 (2000). DOI: 10.1038/35016036
- M. Ono, K. Miura, A. Maeda, H. Matsuzaki, H. Kishida, Y. Taguchi, Y. Tokura, M. Yamashita, H. Okamoto. Phys. Rev. B, 70, 085101 (2004). DOI: 10.1103/PhysRevB.70.085101
- H. Kishida, M. Ono, K. Miura, H. Okamoto, M. Izumi, T. Manako, M. Kawasaki, Y. Taguchi, Y. Tokura, T. Tohyama, K. Tsutsui, S. Maekawa. Phys. Rev. Lett., 87, 177401 (2001). DOI: 10.1103/PhysRevLett.87.177401
- A. Maeda, M. Ono, H. Kishida, T. Manako, A. Sawa, M. Kawasaki, Y. Tokura, H. Okamoto. Phys. Rev. B, 70, 125117 (2004). DOI: 10.1103/PhysRevB.70.125117
- M. Knupfer, J. Fink, S.-L. Drechsler, R. Hayn, J. Malek, A.S. Moskvin. J. Electr. Spectr. Rel. Phenom., 137-140, 469-473 (2004). DOI: 10.1016/j.elspec.2004.02.080
- J. B. Goodenough. J. Supercond., 13, 793 (2000). DOI: 10.1023/A:1007890920990
- V.S. Vikhnin, S. Kapphan. FTT, 40, 907-909 (1998); V.S. Vikhnin, R.I. Eglitis, E.A. Kotomin et al., MRS Online Proceedings Library 677, 415 (2001). DOI: 10.1557/PROC-677-AA4.15
- H. Lu, M. Rossi, A. Nag, M. Osada, D.F. Li, K. Lee, B.Y. Wang, M. Garcia-Fernandez, S. Agrestini, Z.X. Shen, E.M. Been, B. Moritz, T.P. Devereaux, J. Zaanen, H.Y. Hwang, Ke-Jin Zhou, W.S. Lee. Science, 373, 213-216 (2021). DOI: 10.1126/science.abd7726
- S. Ono, Seiki Komiya, Yoichi Ando. Phys. Rev. B, 75, 024515 (2007). DOI: 10.1103/PhysRevB.75.024515
- M. Ikeda, M. Takizawa, T. Yoshida, A. Fujimori, Kouji Segawa, Yoichi Ando. Phys. Rev. B, 82, 020503(R) (2010). DOI: 10.1103/PhysRevB.82.020503
- M.A. Kastner, R.J. Birgeneau, G. Shirane, Y. Endoh. Rev. Mod. Phys., 70, 897 (1998). DOI: 10.1103/RevModPhys.70.897
- J.D. Perkins, R.J. Birgeneau, J.M. Graybeal et al. Phys. Rev. B, 58, 9390 (1998). DOI: 10.1103/PhysRevB.58.9390
- M. Gruninger, D. van der Marel, A. Damascelli, A. Erb, T. Nunner, T. Kopp. Phys. Rev. B, 62, 12422 (2000). DOI: 10.1103/PhysRevB.62.12422
- Moskvin, A.S., Panov, Y.D. Electron Hole Dimers in the Parent Phase of Quasi 2D Cuprates. Phys. Solid State 61, 1553-1558 (2019). https://doi.org/10.1134/S1063783419090178
- L.P. Gor'kov, G.B. Teitelbaum. Phys. Rev. Lett., 97, 247003 (2006). DOI: 10.1103/PhysRevLett.97.247003
- L.P. Gor'kov, G.B. Teitelbaum. J. Phys.: Conf. Ser., 108, 12009 (2008)
- T. Xiang, H.G. Luo, D.H. Lu, K.M. Shen, Z.X. Shen. Phys. Rev. B, 79, 014524 (2009). DOI: 10.1103/PhysRevB.79.014524
- D. Nicoletti, P. Di Pietro, O. Limaj, P. Calvani, U. Schade, S. Ono, Yoichi Ando, S. Lupi. New J. Phys., 13, 123009 (2011). DOI: 10.1088/1367-2630/13/12/123009
- J.M. Ginder, M.G. Roe, Y. Song, R.P. McCall, J.R. Gaines, E. Ehrenfreund. Phys. Rev. B, 37, 7506-7509 (1988). DOI: 10.1103/PhysRevB.37.7506
- Y.H. Kim, S.-W. Cheong, Z. Fisk. Phys. Rev. Lett., 67, 2227 (1991). DOI: 10.1103/PhysRevLett.67.2227
- K. Matsuda, I. Hirabayashi, K. Kawamoto, T. Nabatame, T. Tokizaki, A. Nakamura, Phys. Rev. B, 50, 4097-4101 (1994). DOI: 10.1103/PhysRevB.50.4097
- J.S. Dodge, A.B. Schumacher, L.L. Miller, D.S. Chemla, arXiv:0910.5048v1. DOI: 10.48550/arXiv.0910.5048
- Pascal Puphal, Bjorn Wehinger, Jurgen Nuss, Kathrin Kuster, Ulrich Starke, Gaston Garbarino, Bernhard Keimer, Masahiko Isobe, Matthias Hepting, arXiv:2209.12787. DOI: 10.48550/arXiv.2209.12787
- P. Mendels, H. Alloul. Physica C, 156, 355 (1988). DOI: 10.1016/0921-4534(88)90757-5
- G. Yu, A.J. Heeger, G. Stucky, N. Herron, E.M. McCarron. Solid State Commun., 72, 345 (1989). DOI: 10.1016/0038-1098(89)90115-4
- Tineke Thio, R.J. Birgeneau, A. Cassanho, M.A. Kastner. Phys. Rev. B, 42, 10800(R) (1990). DOI: 10.1103/PhysRevB.42.10800
- V.I. Kudinov, I.L. Chaplygin, A.I. Kirilyuk, N.M. Kreines, R. Laiho, E. Lahderanta, C. Ayache. Phys. Rev. B, 47, 9017 (1993). DOI: 10.1103/PhysRevB.47.9017
- T.M. Rice, L. Sneddon. Phys. Rev. Lett., 47, 689 (1981). DOI: 10.1103/PhysRevLett.47.689
- A.S. Moskvin. JETP, 148, 549-563 (2015). DOI: 10.1134/S1063776115090095
- L.G. Caron, G.W. Pratt. Rev. Mod. Phys., 40, 802 (1968). DOI: 10.1103/RevModPhys.40.802
- D. Pelc, P. Popcevic, M. Pozek, M. Greven, N. Barisic. Science Advances, 5, eaau4538 (2019). DOI: 10.1126/sciadv.aau4538
- Y.G. Zhao, Eric Li, Tom Wu et al. Phys. Rev. B, 63, 132507 (2001). DOI: 10.1103/PhysRevB.63.132507
- Eric Li, R.P. Sharma, S.B. Ogale et al. Phys. Rev. B, 65, 184519 (2002); Phys. Rev. B, 66, 134520 (2004). DOI: 10.1103/PhysRevB.65.184519
- M.J. Holcomb, C.L. Perry, J.P. Collman, W.A. Little. Phys. Rev. B, 53, 6734 (1996). DOI: 10.1103/PhysRevB.53.6734
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.