Charge transfer excitons in HTSC cuprates and nickelates
Moskvin A. S. 1,2
1Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
2M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
Email: alexander.moskvin@urfu.ru

PDF
An analysis of the optical properties of compounds based on 3d-elements provides valuable information about the electronic structure of the ground state and low-energy excitations. Thus, we show that the analysis of charge-transfer d-d excitons in the dielectric antiferromagnetic phase of cuprates and metastable low-energy electron-hole EH dimers being a result of their evolution after electron-lattice relaxation, turns out to be very fruitful not only for describing linear and nonlinear optical properties and photoinduced effects, but also to develop a promising model of charge triplets to describe the low-energy electronic structure and T-x phase diagrams of active CuO2 planes in cuprates of the T-La2CuO4 or T-Nd2CuO4 type, as well as NiO2-planes in nickelates of the RNiO2 type, and their evolution with changes in the main energy parameters. Keywords: cuprates, nickelates, charge-transfer excitons, electron-hole dimers, charge triplets. DOI: 10.61011/EOS.2023.04.56356.70-22
  1. J.G. Bednorz, K.A. Muller. Z. Phys. B, 64, 189 (1986). DOI: 10.1007/BF01303701
  2. D. Li, K. Lee, B.Y. Wang et al. Nature (London), 572, 624 (2019). DOI: 10.1038/s41586-019-1496-5
  3. M. Osada, Bai Yang Wang, B. Goodge, Kyuho Lee, Hyeok Yoon, K. Sakuma, Danfeng Li, M. Miura, L. Kourkoutis, H. Hwang. Nano Lett., 20, 5735-5740 (2020). DOI: 10.1021/acs.nanolett.0c01392
  4. M. Osada, B.Y. Wang, B.H. Goodge, S.P. Harvey, K. Lee, D. Li, L.F. Kourkoutis, H.Y. Hwang. Adv. Mater., 33(45), e2104083 (2021). DOI: 10.1002/adma.202104083
  5. S.W. Zeng, C.J. Li, L.E. Chow, Y. Cao, Z.T. Zhang, C.S. Tang, X.M. Yin, Z.S. Lim, J.X. Hu, P. Yang, A. Ariando. Sci. Adv., 8, eabl9927 (2022)
  6. A.S. Botana, F. Bernardini, A. Cano. JETP, 132, 618-627 (2021). DOI: 10.1134/S1063776121040026
  7. Yaoyao Ji, Junhua Liu, Lin Li et al. J. Appl. Phys., 130, 060901 (2021). DOI: 10.1063/5.0056328
  8. Yusuke Nomura, Ryotaro Arita. Rep. Prog. Phys., 85 052501 (2022). DOI: 10.1088/1361-6633/ac5a60
  9. M. Naito, Y. Krockenberger, A. Ikeda, H. Yamamoto. Physica C, 523, 28 (2016). DOI: 10.1016/j.physc.2016.02.012
  10. Li, Q., He, C., Si, J. et al. Commun Mater., 1, 16 (2020). DOI: 10.1038/s43246-020-0018-1
  11. A.S. Moskvin. FNT, 33, 314-327 (2007). [Low Temp. Phys. 33, 234 (2007)]. DOI: 10.1063/1.2719961
  12. A.S. Moskvin. Phys. Rev. B, 84, 075116 (2011). DOI: 10.1103/PhysRevB.84.075116
  13. A.S. Moskvin. J. Phys.: Condens. Matter, 25, 085601 (2013). DOI: 10.1088/0953-8984/25/8/085601
  14. A.S. Moskvin, Y.D. Panov. J. Supercond. Nov. Magn., 32, 61 (2019). DOI: 10.1007/s10948-018-4896-0
  15. A. Moskvin, Y. Panov. Condens. Matter, 6, 24 (2021). DOI: 10.3390/condmat6030024
  16. A.S. Moskvin, Yu.D. Panov. JMMM, 550, 169004 (2022). DOI: 10.1016/j.jmmm.2021.169004
  17. G.A. Sawatzky. Nature, 572, 592-593 (2019). DOI: 10.1038/d41586-019-02518-3
  18. M. Hepting, D. Li, C.J. Jia et al. Nature Materials, 19, 381-385 (2020). DOI: 10.1038/s41563-019-0585-z
  19. J. Zaanen, G.A. Sawatzky, J.W. Allen. Phys. Rev. Lett., 55, 418 (1985). DOI: 10.1103/PhysRevLett.55.418
  20. A.S. Moskvin. Opt. Spectrosc., 121, 467 (2016). DOI: 10.1134/S0030400X16100167)
  21. A.S. Moskvin, R. Neudert, M. Knupfer. J. Fink, R. Hayn. Phys. Rev. B, 65, 180512(R) (2002). DOI: 10.1103/PhysRevB.65.180512
  22. A.S. Moskvin, J. Malek, M. Knupfer, R. Neudert, J. Fink, R. Hayn, S.-L. Drechsler, N. Motoyama, H. Eisaki, S. Uchida. Phys. Rev. Lett., 91, 037001 (2003). DOI: 10.1103/PhysRevLett.91.037001
  23. R.V. Pisarev, V.V. Pavlov, A.M. Kalashnikova, A.S. Moskvin. Phys. Rev. B, 82, 224502 (2010). DOI: 10.1103/PhysRevB.82.224502
  24. A.S. Moskvin. Optical Materials, 90, 244-251, (2019). DOI: 10.1016/j.optmat.2019.02.033
  25. Moskvin, A.S. Optical Spectroscopy and Superconductivity of Cuprates (Review). Phys. Solid State 61, 693-701 (2019). https://doi.org/10.1134/S1063783419050196
  26. F.C. Zhang, T.M. Rice. Phys. Rev. B, 37, 3759 (1988). DOI: 10.1103/PhysRevB.37.3759
  27. T. Ogasawara, M. Ashida, N. Motoyama, H. Eisaki, S. Uchida, Y. Tokura, H. Ghosh, A. Shukla, S. Mazumdar, M. Kuwata-Gonokami. Phys. Rev. Lett., 85, 2204 (2000). DOI: 10.1103/PhysRevLett.85.2204
  28. A. Schulzgen, Y. Kawabe, E. Hanamura, A. Yamanaka, P.-A. Blanche, J. Lee, H. Sato, M. Naito, N.T. Dan, S. Uchida, Y. Tanabe, N. Peyghambarian. Phys. Rev. Lett., 86, 3164 (2001). DOI: 10.1103/PhysRevLett.86.3164
  29. H. Kishida, H. Matsuzaki, H. Okamoto, T. Manabe, M. Yamashita, Y. Taguchi, Y. Tokura. Nature, 405, 929 (2000). DOI: 10.1038/35016036
  30. M. Ono, K. Miura, A. Maeda, H. Matsuzaki, H. Kishida, Y. Taguchi, Y. Tokura, M. Yamashita, H. Okamoto. Phys. Rev. B, 70, 085101 (2004). DOI: 10.1103/PhysRevB.70.085101
  31. H. Kishida, M. Ono, K. Miura, H. Okamoto, M. Izumi, T. Manako, M. Kawasaki, Y. Taguchi, Y. Tokura, T. Tohyama, K. Tsutsui, S. Maekawa. Phys. Rev. Lett., 87, 177401 (2001). DOI: 10.1103/PhysRevLett.87.177401
  32. A. Maeda, M. Ono, H. Kishida, T. Manako, A. Sawa, M. Kawasaki, Y. Tokura, H. Okamoto. Phys. Rev. B, 70, 125117 (2004). DOI: 10.1103/PhysRevB.70.125117
  33. M. Knupfer, J. Fink, S.-L. Drechsler, R. Hayn, J. Malek, A.S. Moskvin. J. Electr. Spectr. Rel. Phenom., 137-140, 469-473 (2004). DOI: 10.1016/j.elspec.2004.02.080
  34. J. B. Goodenough. J. Supercond., 13, 793 (2000). DOI: 10.1023/A:1007890920990
  35. V.S. Vikhnin, S. Kapphan. FTT, 40, 907-909 (1998); V.S. Vikhnin, R.I. Eglitis, E.A. Kotomin et al., MRS Online Proceedings Library 677, 415 (2001). DOI: 10.1557/PROC-677-AA4.15
  36. H. Lu, M. Rossi, A. Nag, M. Osada, D.F. Li, K. Lee, B.Y. Wang, M. Garcia-Fernandez, S. Agrestini, Z.X. Shen, E.M. Been, B. Moritz, T.P. Devereaux, J. Zaanen, H.Y. Hwang, Ke-Jin Zhou, W.S. Lee. Science, 373, 213-216 (2021). DOI: 10.1126/science.abd7726
  37. S. Ono, Seiki Komiya, Yoichi Ando. Phys. Rev. B, 75, 024515 (2007). DOI: 10.1103/PhysRevB.75.024515
  38. M. Ikeda, M. Takizawa, T. Yoshida, A. Fujimori, Kouji Segawa, Yoichi Ando. Phys. Rev. B, 82, 020503(R) (2010). DOI: 10.1103/PhysRevB.82.020503
  39. M.A. Kastner, R.J. Birgeneau, G. Shirane, Y. Endoh. Rev. Mod. Phys., 70, 897 (1998). DOI: 10.1103/RevModPhys.70.897
  40. J.D. Perkins, R.J. Birgeneau, J.M. Graybeal et al. Phys. Rev. B, 58, 9390 (1998). DOI: 10.1103/PhysRevB.58.9390
  41. M. Gruninger, D. van der Marel, A. Damascelli, A. Erb, T. Nunner, T. Kopp. Phys. Rev. B, 62, 12422 (2000). DOI: 10.1103/PhysRevB.62.12422
  42. Moskvin, A.S., Panov, Y.D. Electron Hole Dimers in the Parent Phase of Quasi 2D Cuprates. Phys. Solid State 61, 1553-1558 (2019). https://doi.org/10.1134/S1063783419090178
  43. L.P. Gor'kov, G.B. Teitelbaum. Phys. Rev. Lett., 97, 247003 (2006). DOI: 10.1103/PhysRevLett.97.247003
  44. L.P. Gor'kov, G.B. Teitelbaum. J. Phys.: Conf. Ser., 108, 12009 (2008)
  45. T. Xiang, H.G. Luo, D.H. Lu, K.M. Shen, Z.X. Shen. Phys. Rev. B, 79, 014524 (2009). DOI: 10.1103/PhysRevB.79.014524
  46. D. Nicoletti, P. Di Pietro, O. Limaj, P. Calvani, U. Schade, S. Ono, Yoichi Ando, S. Lupi. New J. Phys., 13, 123009 (2011). DOI: 10.1088/1367-2630/13/12/123009
  47. J.M. Ginder, M.G. Roe, Y. Song, R.P. McCall, J.R. Gaines, E. Ehrenfreund. Phys. Rev. B, 37, 7506-7509 (1988). DOI: 10.1103/PhysRevB.37.7506
  48. Y.H. Kim, S.-W. Cheong, Z. Fisk. Phys. Rev. Lett., 67, 2227 (1991). DOI: 10.1103/PhysRevLett.67.2227
  49. K. Matsuda, I. Hirabayashi, K. Kawamoto, T. Nabatame, T. Tokizaki, A. Nakamura, Phys. Rev. B, 50, 4097-4101 (1994). DOI: 10.1103/PhysRevB.50.4097
  50. J.S. Dodge, A.B. Schumacher, L.L. Miller, D.S. Chemla, arXiv:0910.5048v1. DOI: 10.48550/arXiv.0910.5048
  51. Pascal Puphal, Bjorn Wehinger, Jurgen Nuss, Kathrin Kuster, Ulrich Starke, Gaston Garbarino, Bernhard Keimer, Masahiko Isobe, Matthias Hepting, arXiv:2209.12787. DOI: 10.48550/arXiv.2209.12787
  52. P. Mendels, H. Alloul. Physica C, 156, 355 (1988). DOI: 10.1016/0921-4534(88)90757-5
  53. G. Yu, A.J. Heeger, G. Stucky, N. Herron, E.M. McCarron. Solid State Commun., 72, 345 (1989). DOI: 10.1016/0038-1098(89)90115-4
  54. Tineke Thio, R.J. Birgeneau, A. Cassanho, M.A. Kastner. Phys. Rev. B, 42, 10800(R) (1990). DOI: 10.1103/PhysRevB.42.10800
  55. V.I. Kudinov, I.L. Chaplygin, A.I. Kirilyuk, N.M. Kreines, R. Laiho, E. Lahderanta, C. Ayache. Phys. Rev. B, 47, 9017 (1993). DOI: 10.1103/PhysRevB.47.9017
  56. T.M. Rice, L. Sneddon. Phys. Rev. Lett., 47, 689 (1981). DOI: 10.1103/PhysRevLett.47.689
  57. A.S. Moskvin. JETP, 148, 549-563 (2015). DOI: 10.1134/S1063776115090095
  58. L.G. Caron, G.W. Pratt. Rev. Mod. Phys., 40, 802 (1968). DOI: 10.1103/RevModPhys.40.802
  59. D. Pelc, P. Popcevic, M. Pozek, M. Greven, N. Barisic. Science Advances, 5, eaau4538 (2019). DOI: 10.1126/sciadv.aau4538
  60. Y.G. Zhao, Eric Li, Tom Wu et al. Phys. Rev. B, 63, 132507 (2001). DOI: 10.1103/PhysRevB.63.132507
  61. Eric Li, R.P. Sharma, S.B. Ogale et al. Phys. Rev. B, 65, 184519 (2002); Phys. Rev. B, 66, 134520 (2004). DOI: 10.1103/PhysRevB.65.184519
  62. M.J. Holcomb, C.L. Perry, J.P. Collman, W.A. Little. Phys. Rev. B, 53, 6734 (1996). DOI: 10.1103/PhysRevB.53.6734

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru