Bezlepkina N.P.
1, Tchaikovskaya O.N.
1, Bocharnikova E.N.
1, Bazyl' O.K.
11Tomsk State University, Tomsk, Russia
Email: nadezhda.bezlepkina174833@mail.ru, tchon@phys.tsu.ru, bocharnikova.2010@mail.ru, olga.k.bazyl@gmail.com
The phototransformation of sulfaguanidine in water under ultraviolet (UV) radiation was studied experimentally and theoretically. Absorption, fluorescence and fluorescence excitation spectra of the studied substance before and after irradiation were obtained. Under the influence of KrCl excylamp radiation, stained photoproducts were formed. Quantum-chemical analysis of the orbital nature and localization of electronic transitions of complexes of photoproducts with water 1 : 3 reveals great similarity with the spectrum of the complex of the parent compound. The energy of electronic transitions of primary photoproducts decreases that is there is a low-energy shift of transitions S0 -> S1 l(π π r) and S0 -> S3 l(π π r) of the original molecule to long-wave region of spectrum (260-315 nm) and decrease of intensity of transition S0 -> S3 l( π π r) of sulfaguanidine coplex. In the process of irradiation under the action of KrCl excylamp, the transformation of sulfaguanidine, its primary photoproducts and their subsequent interaction with each other and the solvent occur, which leads to the appearance of a colored photoproduct absorbing at λmax = 560 nm. Keywords: sulfaguanidine, sulfanilic acid, photolysis, UV irradiation, absorption, fluorescence, photodissociative states. DOI: 10.61011/EOS.2023.04.56363.4388-22
- R.M. Baena-Nogueras, E. Gonzalez-Mazo, P.A. Lara-Marti n. Environ. Sci. Technol., 51, 3148 (2017). DOI: 10.1021/acs.est.6b03038
- A. Gentili, D. Perret, S. Marchese. Trends in Analyt. Chem., 24 (7), 704 (2005). DOI: 10.1016/j.trac.2005.04.013
- S. Rafqah, M. Sarakha. J. Photochem. Photobiol. A., 316, 1 (2016). DOI: 10.1016/j.jphotochem.2015.10.003
- R. Rosal, A.G. Rodriguez, J.A. Perdigon-Melon, A.L. Petre, E. Garci a-Calvo, M.J. Gomez, A. Aguera, A.R. Fernandez-Alba. Water Research, 44 (2), 578 (2010). DOI: 10.1016/j.watres.2009.07.004
- E. Zuccato, S. Castiglioni, R. Bagnati, M. Melis, R. Fanelli. J. Hazard. Mater., 179 (1-3), 1042 (2010). DOI: 10.1016/j.jhazmat.2010.03.110
- M. Gros, M. Petrovic, A. Ginebreda, D. Barcelo. Environ. Int., 36 (1), 15 (2009). DOI: 10.1016/j.envint.2009.09.002
- J. Fick, H. Soderstrom, R. Lindberg, C. Phan, M. Tysklind, D. Larsson. Environ. Toxicol. Chem., 28, 2522 (2009). DOI: 10.1897/09-073.1
- A. Bia k-Bielinska, J. Maszkowska, W. Mrozik, A. Bielawska, M. Ko odziejska, R. Palavinskas, P. Stepnowski, J. Kumirska. Chemosphere, 86 (10), 1059 (2012). DOI: 10.1016/j.chemosphere.2011.11.058
- O. Zielinski, J. Busch, A. Cembella, K. Daly, J. Engelbrektsson, A. Hannides, H. Schmidt. Ocean Sci. Discuss., 5, 329 (2009). DOI: 10.5194/OS-5-329-2009
- C.G. Daughton, T.A. Ternes. Environ. Health Perspectives, 107, 907 (1999). DOI: 10.1289/ehp.99107s6907
- T.A. Ternes, M. Meisenheimer, D. McDowell, F. Sacher, H.-J. Brauch, B. Haist-Gulde, G. Preuss, U. Wilme, N. Zulei-Seibert. Environ. Sci. Technol., 36, 3855(2002). DOI: 10.1021/es015757k
- H.D. Burrows, M. Canle L, J.A. Santaballa, S. Steenken. J. Photochem. Photobiol. B, 67 (2), 71 (2002). DOI: 10.1016/s1011-1344(02)00277-4
- A. Lin, Y. Lin, W. Lee. Environ. Pollution, 187, 170 (2014). DOI: 10.1016/j.envpol.2014.01.005
- J. Xu, Z. Hao, C. Guo, Y. Zhang, Y. He, W. Meng. Chemosphere, 99, 186 (2014). DOI: 10.1016/j.chemosphere.2013.10.069
- S. Chiron, C. Minero, D. Vione. Environ. Sci. Technol., 40 (19), 5977 (2006). DOI: 10.1021/es060502y
- P. Sukul, M. Lamshoft, S. Zuhlke, M. Spiteller. Chemosphere, 71 (4), 717 (2008). DOI: 10.1016/j.chemosphere.2007.10.045
- J. Niu, L. Zhang, Y. Li, J. Zhao, S. Lv, K. Xiao. J. Environ. Sci., 25 (6), 1098 (2013). DOI: 10.1016/s1001-0742(12)60167-3
- U. Hubicka, P. Zmudzki, P. Talik, B. Zuromska-Witek, J. Krzek. Chemistry Central J., 7 (1), 133 (2013). DOI: 10.1186/1752-153X-7-133
- N.D. Khaleel, W.M. Mahmoud, G.M. Hadad, R.A. Abdel-Salam, K. Kummerer. J. Hazard. Mater., 244, 654 (2013). DOI: 10.1016/j.jhazmat.2012.10.059
- L. Mersly, M. Mouchtari, M. Zefzoufi, M. Sarakha, M. Haddad, S. Rafqah. J. Photochem. Photobiol. A, 430, 113985(2022). DOI: 10.1016/j.jphotochem.2022.113985
- C.J. Smyth, M.B. Finkelstein, S.E. Gould, T.M. Koppa, F.S. Leeder. J. Amer. Med. Assoc., 121 (17), 1325 (1943)
- O.N. Tchaikovskaya, E.N. Bocharnikova, I.A. Lysak, T.D. Malinovskaya, G.V. Lysak, I.V. Plotnikova, S.E. Sakipova. Micro and Nanosystems, 12 (3), 345 (2020)
- V.Ya. Artyukhov, A.I. Galeeva. Soviet Physics J., 29, 949 (1986). DOI: 10.1007/BF00898453
- E. Scroco, J. Tomasi. Adv. Quant. Chem., 11, 115 (1978). DOI: 10.1016/S0065-3276(08)60236-1
- V.Ya. Artyukhov. J. Struct. Chem., 19 (3), 364 (1978). DOI: 10.1007/BF00753260
- O. Rinco, M.H. Kleinman, C. Bohne. Langmuir., 17, 5781 (2001). DOI: 10.1021/la010526c
- G.V. Maier, O.K. Bazyl, V.Ya. Artyukhov. Opt.Spectrosc., 82 (6), 767 (1992)
- O.K. Bazyl, O.N. Chaikovskaya, V.S. Chaidonova, E.N. Bocharnikova, G.V. Mayer. Opt. i spektr., 130 (5), 627 (2022). (in Russian). DOI: 10.21883/OS.2022.11.53768.3721-22
- L. Bellami. Infrakrasnyye spektry slozhnykh molekul (Izdatel'stvo inostrannoy literatury, M., 1957)(in Russian)
- B.R. Eggins. Khimicheskaya struktura i reaktsionnaya sposobnost' tverdykh veshchestv (Khimiya, M., 1976) (in Russian)
- A.I. Kitaigorodskiy, P.M. Zorkiy, V.K. Belskiy. Stroenie organicheskogo veshestva ( dannye strukturnykh issledovaniy 1929-1970 ) (Nauka, M., 1980) (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.