Effect of additional monopole electron ejections on the final ion charge spectra following the cascade decay of electron vacancies in the gold atom
Chaynikov A. P.
1, Kochur A. G.
1, Dudenko A. I.
1, Yavna V. A.
11Rostov State University for Railway Transportation, Rostov-on-Don, Russia
Email: chaynikov.a.p@gmail.com, agk@rgups.ru, vay@rgups.ru
The probabilities of the formation of final ions produced by the cascade decays of vacancies in the K-, L-, M-, N- and O-shells of the gold atom are calculated. Simulation of the cascade decays of vacancies is performed by direct construction and analysis of decay trees using branching ratios and transition energies calculated in the Pauli-Fock approximation for multivacancy electron configurations arising in the course of the cascade decay. Accounting for additional monopole ejections of electrons (shake-off) accompanying the cascade transitions leads to a slight increase in the average charges of the final ions, by 0.15-0.23e. The largest relative increase in the calculated average charges of the final ions (by 3.6-3.9%) is observed upon the cascade decay of vacancies in 4p3/2-, 4d3/2-, and 4d5/2-subshells, and the smallest (by 0.8%) occurs in the decay of 4f-vacancy. Despite insignificant changes in the average ion charges, the structure of the charge spectra in some cases changes noticeably enough when additional electron ejections are taken into account. It is expected that in simulation of the cascade energy reemission processes when heavy atoms are used as radiosensitizers, the effect of accounting for shake-off processes will be insignificant. Keywords: cascade decay of vacancies, charge spectra of cascade ions, monopole multiple ionization, shake-off, radiosensitization. DOI: 10.61011/EOS.2023.04.56366.4560-22
- M.O. Krause, M.L. Vestal, W.H. Johnston, T.A. Carlson. Phys. Rev., 133 (2A), A385 (1964). DOI: 10.1103/PhysRev.133.A385
- T.A. Carlson, M.O. Krause. Phys. Rev., 137 (6A), A1655 (1965). DOI: 10.1103/PhysRev.137.A1655
- T.A. Carlson, M.O. Krause. Phys. Rev. Lett., 14 (11), 390 (1965). DOI: 10.1103/PhysRevLett.14.390
- M.O. Krause, T.A. Carlson. Phys. Rev., 149 (1), 52 (1966). DOI: 10.1103/PhysRev.149.52
- T.A. Carlson, W.E. Hunt, M.O. Krause. Phys. Rev., 151 (1), 41 (1966). DOI: 10.1103/PhysRev.151.41
- M.O. Krause, T.A. Carlson. Phys. Rev., 158 (1), 18 (1967). DOI: 10.1103/PhysRev.158.18
- T. Mukoyama. Bull. Inst. Chem. Res., Kyoto Univ., 63, 373 (1985)
- T. Mukoyama, T. Tonuma, A. Yagishita, H. Shibata, T. Koizumi, T. Matsuo, K. Shima, H. Tawara. J. Phys. B, 20 (17), 4453 (1987). DOI: 10.1088/0022-3700/20/17/023
- M.N. Mirakhmedov, E.S. Parilis. J. Phys. B, 21 (5), 795 (1988). DOI: 10.1088/0953-4075/21/5/010
- G. Omar, Y. Hahn. Phys. Rev. A, 44 (1), 483 (1991). DOI:https://doi.org/10.1103/PhysRevA.44.483
- G. Omar, Y. Hahn. Z. Phys. D, 25 (1), 41 (1992). DOI: 10.1007/BF01437518
- G. Omar, Y. Hahn. Z. Phys. D, 25 (1), 31 (1992). DOI: 10.1007/BF01437517
- A.G. Kochur, A.I. Dudenko, V.L. Sukhorukov, I.D. Petrov. J. Phys. B, 27 (9), 1709 (1994). DOI: 10.1088/0953-4075/27/9/011
- A.G. Kochur, V.L. Sukhorukov, A.J. Dudenko, P.V. Demekhin. J. Phys. B, 28 (3), 387 (1995). DOI: 10.1088/0953-4075/28/3/010
- A. El-Shemi, Y. Lofty, I. Reiche, G. Zschornack. Radiat. Phys. Chem., 49 (4), 403 (1997). DOI: 10.1016/S0969-806X(96)00178-8
- A.H. Abdullah, A.M. El-Shemi, A.A. Ghoneim. Radiat. Phys. Chem., 68 (5), 697 (2003). DOI: 10.1016/S0969-806X(03)00433-X
- V. Jonauskas, L. Partanen, S. Kuv cas, R. Karazija, M. Huttula, S. Aksela, H. Aksela. J. Phys. B, 36 (22), 4403 (2003). DOI: 10.1088/0953-4075/36/22/003
- A.M. El-Shemi. Jpn. J. Appl. Phys., 43 (5R), 2726 (2004). DOI: 10.1143/JJAP.43.2726
- A.M. El-Shemi. Can. J. Phys., 82 (10), 811 (2004). DOI: 10.1139/p04-045
- Y.A. Lotfy, A.M. El-Shemi. Symmetry, Integr. Geom. Methods Appl., 2, 015 (2006). DOI: 10.3842/SIGMA.2006.015
- A.M. Mohammedein, A.A. Ghoneim, K.M. Kandil, I.M. Kadad. AIP Conf. Proc., 1202, 213 (2010). DOI: 10.1063/1.3295600
- A.P. Chaynikov, A.G. Kochur, V.A. Yavna. Opt. i spektr., 119 (2), 179 (2015) (in Russian). DOI: 10.7868/S003040341508005X [A.P. Chaynikov, A.G. Kochur, V.A. Yavna. Opt. Spectrosc., 119 (2), 171 (2015). DOI: 10.1134/S0030400X15080056]
- X.L. Wang, B.X. Liu, G.H. Zhang, P.Y. Wang, L.W. Liu, X.Y. Li. J. Electron Spectros. Relat. Phenomena., 250, 147083 (2021). DOI: 10.1016/j.elspec.2021.147083
- V.L. Jacobs, J. Davis, B.F. Rozsnyai, J.W. Cooper. Phys. Rev. A, 21 (6), 1917 (1980). DOI:10.1103/PhysRevA.21.1917
- A.G. Kochur, A.P. Chaynikov, A.I. Dudenko, V.A. Yavna. JQSRT, 286, 108200 (2022). DOI: 10.1016/j.jqsrt.2022.108200
- S. Kuv cas, P. Drabuv zinskis, A. Kyniene, v S. Masys, V. Jonauskas. J. Phys. B, 52 (22), 225001 (2019). DOI: 10.1088/1361-6455/ab46fa
- S. Kuv cas, P. Drabuv zinskis, V. Jonauskas. At. Data Nucl. Data Tables, 135-136, 101357 (2020). DOI: 10.1016/j.adt.2020.101357
- G. Omar, Y. Hahn. Phys. Rev. A, 43 (9), 4695 (1991). DOI: 10.1103/PhysRevA.43.4695
- S. Fritzsche, P. Palmeri, S. Schippers. Symmetry (Basel), 13 (3), 520 (2021). DOI: 10.3390/sym13030520
- S. Kuvcas, R. Karazija, A. Momkauskaite. Astrophys. J., 750 (2), 90 (2012). DOI: 10.1088/0004-637X/750/2/90
- C. Gerth, A.G. Kochur, M. Groen, T. Luhmann, M. Richter, P. Zimmermann. Phys. Rev. A, 57 (5), 3523 (1998). DOI: 10.1103/PhysRevA.57.3523
- A. El-Shemi, Y. Lofty, G. Zschornack. J. Phys. B, 30 (2), 237 (1997). DOI: 10.1088/0953-4075/30/2/017
- A. El-Shemi, A. Ghoneim, Y. Lotfy. Turk. J. Phys., 27, 51 (2003). URL: https://journals.tubitak.gov.tr/physics/vol27/iss1/5
- A. El-Shemi. Turk. J. Phys., 28, 229 (2004). URL: https://journals.tubitak.gov.tr/physics/vol28/iss4/3/
- A.M. El-Shemi, Y.A. Lotfy. Eur. Phys. J. D, 32 (3), 277 (2005). DOI: 10.1140/epjd/e2005-00003-3
- V.P. Sachenko, V.F. Demekhin. Sov. Phys. JETP, 49 (3), 765 (1965)
- T.A. Carlson, C.W. Nestor, T.C. Tucker, F.B. Malik. Phys. Rev., 169 (1), 27 (1968). DOI: 10.1103/PhysRev.169.27
- T. Mukoyama, K. Taniguchi. Phys. Rev. A, 36 (2), 693 (1987). DOI: 10.1103/PhysRevA.36.693
- A.G. Kochur, A.I. Dudenko, D. Petrini. J. Phys. B, 35 (2), 395(2002). DOI: 10.1088/0953-4075/35/2/315
- A.P. Chaynikov, A.G. Kochur, A.I. Dudenko, I. Petrov, V.A. Yavna. Phys. Scr., 98 (2), 025406 (2023). DOI: 10.1088/1402-4896/acb407
- F. von Busch, J. Doppelfeld, C. Gunther, E. Hartmann. J. Phys. B, 27 (11), 2151 (1994). DOI: 10.1088/0953-4075/27/11/011
- R. Kau, I.D. Petrov, V.L. Sukhorukov, H. Hotop. Z. Phys. D, 39 (4), 267 (1997). DOI: 10.1007/s004600050137
- S.T. Perkins, D. Cullen, M.H. Chen, J. Rathkopf, J. Scofield, J.H. Hubbell. Tables and Graphs of Atomic Subshell and Relaxation Data Derived from the LLNL Evaluated Atomic Data Library (EADL), Z=1-100, Vol. UCRL-50400 (US Department of Energy, Office of Scientific and Technical Information, United States, 1991)
- D.L. Walters, C.P. Bhalla. Phys. Rev. A, 3 (6), 1919 (1971). DOI: 10.1103/PhysRevA.3.1919
- V.G. Yarzhemsky, A. Sgamellotti. J. Electron Spectros. Relat. Phenomena, 125 (1), 13 (2002). DOI: 10.1016/S0368-2048(02)00042-7
- A.G. Kochur, A.I. Dudenko, I.D. Petrov, V.F. Demekhin. J. Electron Spectros. Relat. Phenomena, 156-158, 78 (2007). DOI: 10.1016/j.elspec.2006.11.033
- A.G. Kochur Protsessy raspada vakansiy v glubokikh elektronnykh obolochkah. (in Russian). Avtoref. dis. dokt. fiz.-mat. nauk (Rostov-on-Don, 1997) (in Russian). URL: https://search.rsl.ru/ru/record/01000199628
- R. Karazija. Sums of Atomic Quantities and Mean Characteristics of Spectra (Mokslas, Vilnius, 1991)
- S. Kuv cas, R. Karazija. Phys. Scr., 47 (6), 754 (1993). DOI: 10.1088/0031-8949/47/6/012
- Y. Liu, P. Zhang, F. Li, X. Jin, J. Li, W. Chen, Q. Li. Theranostics, 8 (7), 1824 (2018). DOI: 10.7150/thno.22172
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.