Trukhanov A. V.1,2, Trukhanov S. V.1,2, Korovushkin V. V.2, Kostishin V. G.2, Turchenko V. A.3, Zubar T. I.1, Sangaa D.4, Abmetko N. V.1, Grekov I. A.1,5, Migas D. B.5, Tishkevich D. I.1
1Scientific and Practical Materials Research Center, National Academy of Sciences of Belarus, Minsk, Belarus
2National University of Science and Technology MISiS, Moscow, Russia
3Joint Institute for Nuclear Research, Dubna, Russia
4Institute of Physics and Technology, Mongolian Academy of Sciences, Mongolia, Ulaanbaatar
5Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus
Email: truhanov86@mail.ru
The results of studies of the features of the phase composition, crystal and magnetic structure of Bi-substituted barium hexaferrite BaFe12-xBixO19 (0.1≤ x≤ 1.2) by methods of Mossbauer spectroscopy, X-ray phase analysis, as well as image analysis by scanning electron microscopy are presented. Samples of Bi-substituted hexaferrites - BaFe12-xBixO19 (where x=0.1; 0.3; 0.6; 0.9 and 1.2) were synthesized by the method of solid-phase reactions with double annealing (at T=1100oC for 6 h) and intermediate grinding (for 0.5 h). The X-ray phase analysis allowed us to establish the limit of substitution of Fe3+ ions by Bi3+ ions. It has been shown that at a low level of substitution (x≤0.3) there are no impurity phases detected and the samples are characterized by a single-phase state with the spatial group P63/mmc. When the degree of substitution increases (x>0.3) the formation of impurity phases is noted, which can be explained by the difficulties of ion diffusion in the process of solid-phase synthesis, as well as the formation of defects in the structure of magentoplumbite due to the large ionic radius of Bi3+. As impurity phases in the studied compositions (x>0.3) Marked: BiFeO3 (Pr. Gr. Pnma); BiO2 (Pr. Gr. Fm-3m); BaBi2O6 (Pr. Gr. R-3) and BaO0,5Bi1,5O2,16 (Pr. Gr. Im-3m). The content of the main phase (Pr. Gr. P63mmc) at the same time decreases from 95.11 to 88.27 vol.% when increasing x from 0.6 to 1.2, respectively. The analysis performed by the method of Messbaurov spectroscopy showed that all Fe ions have a charge of 3+. And all parameters lie within the values characteristic of Fe3+ ions corresponding to the coordination of polyhedra: 12k. 4f2, 2a - octahedra, 4f1 - tetrahedron, and 2b - bipyramide. It is possible to single out a small monotonous decrease only for the 12k position. The analysis of SEM images showed an increase in the average particle size up to 10 mkm, depending on the concentration of bismuth oxide during the synthesis of hexaferrite. Keywords: hexaferrites, diamagnetic substitution, bismuth oxide, Mossbauer spectroscopy, X-ray phase analysis. DOI: 10.61011/PSS.2023.08.56570.104
- S.B. Narang, K. Pubby. J. Magn. Magn. Mater. 519, 167163 (2020). DOI: 10.1016/j.jmmm.2020.167163
- P. Thakur, D. Chahar, S. Taneja, N. Bhalla, A. Thakur. Ceram. Int. 46, 10, 15740 (2020). DOI: 10.1016/j.ceramnit.2020.03. 287
- A. Houbi, A.A. Zharmenov, Y. Atassi, Z.T. Bagasharova, S. Mirzalieva, K. Kadyrakunov. J. Magn. Magn. Mater. 529, 167839 (2021). DOI: 10.1016/j.jmmm.2021.167839
- G. Srinivasan, I.V. Zavislyak, M. Popov, G. Sreenivasulu, Y.K. Fetisov. J. Jpn Soc. Powder Powder Met. 61, S25 (2014). DOI: 10.2497/jspm.61.s25
- C. de Julian Fernandez, C. Sangregorio, J. de la Figuera, B. Belec, D. Makovec, D. Quesada. J. Phys. D 54, 15, 153001 (2021). DOI: 10.1088/1361-6463/abd272
- A. Talaat, M.V. Suraj, K. Byerly, A. Wang, Y. Wang, J.K. Leea, P.R. Ohodnicki. J. Alloys Compd. 870, 159500 (2021). DOI: 10.1016/j.jallcom. 2021.159500
- E.J.J. Mallmann, A.S.B. Sombra, J.C. Goes, P.B.A. Fechine. Solid State Phenom. 202, 65 (2013). DOI: 10.4028/www.scientific.net/ssp.202.65
- M. Chandel, V.P. Singh, R. Jasrotia, K. Singha, R. Kumar. AIMS Mater. Sci. 7, 3, 244 (2020). DOI: 10.3934/matersci.2020.3.244
- A.V. Trukhanov, V.O. Turchenko, I.A. Bobrikov, S.V. Trukhanov, I.S. Kazakevich, A.M. Balagurov. J. Magn. Magn. Mater. 253, 393 (2015)
- Y. Tokunaga, Y. Kaneko, D. Okuyama, S. Ishiwata, T. Arima, S. Wakimoto, K. Kakurai, Y. Taguchi, Y. Tokura. Phys. Rev. Lett. 105, 257201-4 (2010)
- A.V. Trukhanov, V.A. Turchenko, V.G. Kostishin, F. Damay, F. Porcher, N. Lupu, B. Bozzo, I. Fina, S. Polosan, M.V. Silibin, M.M. Salem, D.I. Tishkevich, S.V. Trukhanov. J. Alloys Compd. 886, 161249 (2021).
- D.A. Vinnik, V.V. Kokovkin, V.V. Volchek, V.E. Zhivulin, P.A. Abramov, N.A. Cherkasova, Zhipeng Sun, M.I. Sayyed, D.I. Tishkevich, A.V. Trukhanov. Mater. Chem. Phys. 270, 124818 (2021)
- G. Tan, X. Chen. J. Magn. Magn. Mater. 327, 87 (2013)
- A.V. Trukhanov, S.V. Trukhanov, L.V. Panina, V.G. Kostishyn, D.N. Chitanov, I.S. Kazakevich, An.V. Trukhanov, V.A. Turchenko, M. Salem. Ceram. Int. 3, 5635 (2017)
- V.E. Zhivulin, D.P. Sherstyuk, O.V. Zaitseva, N.A. Cherkasova, D.A. Vinnik, S.V. Taskaev, E.A. Trofimov, S.V. Trukhanov, S.I. Latushka, D.I. Tishkevich, T.I. Zubar, A.V. Trukhanov. Nanomater. 12, 1306 (2022)
- V.E. Zhivulin, E.A. Trofimov, O.V. Zaitseva, D.P. Sherstyuk, N.A. Cherkasova, S.V. Taskaev, D.A. Vinnik, Yu.A. Alekhina, N.S. Perov, D.I. Tishkevich, T.I. Zubar, A.V. Trukhanov, S.V. Trukhanov. Cer. Int. 49, 1, 1069 (2023)
- P.V. Boikachev, A.S. Solonar, V.O. Isaev, I.A. Dubovik, A.A. Sut'ko, T.I. Zubar', D.I. Tishkevich. J. Eng. Phys. Thermophys. 95, 5 (2022)
- V. Adelskold. Arkiv for mineralogi och geologi A 12, 1 (1938)
- R.C. Pullar. Prog. Mater. Sci. 57, 1191 (2012)
- I. Smith, H. Vane. Ferrites. IL, M. (1962), 504 p. (in Russian)
- V.V. Korovushkin, M.N. Shipko, V.G. Kostishin, I.M. Isayev, A.Yu. Mironovich, S.V. Trukhanov, A.V. Trukhanov. Neorgan. materialy 55, 10, 1065 (2019) (in Russian)
- A.M. der Kraan. Phys. Status Solidi 18, 215 (1973)
- A.H. Morrish, K. Haneda, P.J. Schurer, J. de Physique, Colloque C6 37, C6-301. (1976)
- P.M.A. De Bakker, E. De Grave, R.E. Vandenberghe, L.H. Bowen. Hyperfine Interact. 54, 493 (1990)
- A. Berkowitz, J. Lahut, C. VanBuren, IEEE Trans. Magn. 16, 184 (1980)
- K. Haneda, H. Kojima, A.H. Morrish, P.J. Picone, K. Wakai. J. Appl. Phys. 53, 2686 (1982)
- A.H. Morrish, K. Haneda, X.Z. Zhou. Nanophase Mater. Synth. 515 (1994)
- A.S. Kamzin, L.P. Olkhovik, V.L. Rosenbaum. FTT 41 483 (1999). (in Russian)
- A.S. Kamzin, L.P. Olkhovik. FTT 41, 10, 1806 (1999). (in Russian)
- V.V. Korovushkin, A.V. Trukhanov, M.N. Shipko, V.G. Kostishin, I.M. Isayev, A.Yu. Mironovich, S.V. Trukhanov. Zhurn. neorgan. khimii 64, 5, 463 (2019). in Russian)
- H. Basma, H.T. Rahal, R. Awad. J. Magn. Magn. Mater. 539, 168413 (2021)
- E.S. Lim, K.R. Mun, Y.M. Kang. J. Magn. Magn. Mater. 464, 26 (2018)
- Y. Dai, Z. Lan, Z. Yu, K. Sun, X. Zhang, X. Jiang, C. Wu, W. Tong. J. Magn. Magn. Mater. 540, 168443 (2021)
- K. Chokprasombat, A. Lohmaah, S. Pinitsoontorn, Ch. Sirisathitkul. J King Saud Univ Sci. 34, 1, 101682 (2022)
- S. Guner, I.A. Auwal, A. Baykal, H. Sozeri. J. Magn. Magn. Mater. 416, 261 (2016)
- I. Auwal, A. Baykal, S. Guner, H. Sozeri. Ceram. Int. 43, 1, 1298 (2017)
- A.V. Trukhanov, K.A. Darwish, M.M. Salem, O.M. Hemeda, M.I. Abdel Ati, M.A. Darwish, E.Y. Kaniukov, S.V. Podgornaya, V.A. Turchenko, D.I. Tishkevich, T.I. Zubar, K.A. Astapovich, V.G. Kostishyn, S.V. Trukhanov. J. Alloys Compd. 866, 158961 (2021)
- D. Tishkevich, S. Grabchikov, T. Zubar, D. Vasin, S. Trukhanov, A. Vorobjova, D. Yakimchuk, A. Kozlovskiy, M. Zdorovets, S. Giniyatova, D. Shimanovich, D. Lyakhov, D. Michels, M. Dong, S. Gudkova, A. Trukhanov. Nanomater. 10, 1245 (2020)
- R.C. Pullar. Prog. Mater. Sci. 57, 1191 (2012)
- http://abulafia.mt.ic.ac.uk/shannon/radius.php?Element=Fe
- http://abulafia.mt.ic.ac.uk/shannon/radius.php?Element=Bi
- V.G. Kostishin, V.V. Korovushkin, I.M. Isayev, A.Yu. Mironovich, S.V. Trukhanov, V.A. Turchenko, K.A. Astapovich, A.V. Trukhanov. FTT 63, 229 (2021) (in Russian)
- V.G. Kostishin, V.V. Korovushkin, K.V. Poholok, A.V. Trukhanov. FTT 10, 1496 (2021). (in Russian)
- S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, An.V. Trukhanov, E.L. Trukhanova, D.I. Tishkevich, V.M. Ivanov, T.I. Zubar, M. Salem, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.V. Gudkova. Ceram. Int. 44, 1, 290 (2018).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.