Bundles of High-Refractive-Index Optical Fibers for THz-Imaging with Subwavelength Resolution (Review)
Melikyants D. G.1, Kurlov V. N.2, Zaytsev K. I.1, Katyba G. M.2
1Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
2Osipyan Institute of Solid State Physics RAS, Chernogolovka, Russia

PDF
Bunches or bundles of optical fibers find more and more applications in various fields of fiber optics, despite the relatively low resolution of such devices, which does not exceed the wavelength λ. One way to cope with this challenge is to use materials with a high refractive index, which will make it possible to achieve strong localization of radiation modes in the fiber. This review describes the use of sapphire fibers with a high refractive index n>3 for these purposes. They are used as the basis for fiber bundles operating in the terahertz (THz) range and provide imaging with a spatial resolution that exceeds the Abbe diffraction limit for free space. Bundles of sapphire fibers of various configurations are fabricated, consisting of arrays of parallel and non-parallel fibers, and their spatial resolution is estimated theoretically and experimentally using both the analysis of the pair correlation function of disordered fiber packing and the THz-imaging. In particular, for a bundle consisting of parallel metal-coated fibers, the resolution varies along the aperture with an average value of 0.53 λ, and in some areas it can achieve 0.3 λ. In the case of tapered fiber bundle with dielectric coating the resolution is 0.35 λ, which is much higher than the Abbe limit. The developed principles can be transferred to any spectral range where materials for fiber optics with a high refractive index are available. Finally, methods for reconstructing THz images of test binary objects obtained using the proposed bundles are described. Keywords: optical fibers, sapphire, subwavelength spatial resolution, terahertz frequency range. DOI: 10.61011/EOS.2023.06.56659.125-23
  1. G. Agrawal. Nonlinear Fiber Optics, 4th ed. (Elsevier Science, USA, 2007)
  2. G. Keiser, F. Xiong, Y. Cui, P. Shum. J. Biomed. Opt., 19, 080902 (2014). DOI: 10.1117/1.jbo.19.8.080902
  3. J. Li, H. Ebendorff-Heidepriem, B. Gibson, A. Greentree, M. Hutchinson, P. Jia, R. Kostecki, G. Liu, A. Orth, M. Ploschner, E. Schartner, S. Warren-Smith, K. Zhang, G. Tsiminis, E. Goldys. APL Photonics, 3, 100902 (2018). DOI: 10.1063/1.5040861
  4. C. Lee, C. Engelbrecht, T. Soper, F. Helmchen, E. Seibel. J. Biophotonics, 3 (5-6), 385 (2010). DOI: 10.1002/jbio.200900087
  5. L. Doronina-Amitonova, I. Fedotov, O. Efimova, M. Chernysheva, A. Fedotov, K. Anokhin, A. Zheltikov. Appl. Phys. Lett., 101, 233702 (2012). DOI: 10.1063/1.4864646
  6. S. Sivankutty, A. Bertoncini, V. Tsvirkun, N.G. Kumar, G. Brevalle, G. Bouwmans, E.R. Andresen, C. Liberale, H. Rigneault. Opt. Lett., 46 (19), 4968 (2021). DOI: 10.1364/OL.435063
  7. Y. Lavi, A. Millo, A. Katzir. Appl. Phys. Lett., 87, 241122 (2005). DOI: 10.1063/1.2141728
  8. W. Xing, L. Wang, K. Maslov, L. Wang. Opt. Lett., 38 (1), 52 (2013). DOI: 10.1364/OL.38.000052
  9. B. Flusberg, E. Cocker, W. Piyawattanametha, J. Jung, E. Cheung, M. Schnitzer. Nat. Methods, 2, 941 (2005). DOI: 10.1038/nmeth820
  10. W. Gobel, J. Kerr, A. Nimmerjahn, F. Helmchen. Opt. Lett., 29 (21), 2521 (2004). DOI: 10.1364/OL.29.002521
  11. L. Doronina-Amitonova, I. Fedotov, A. Fedotov, A. Zheltikov. Appl. Phys. Lett., 102, 161113 (2013). DOI: 10.1063/1.4801847
  12. B. Lee, S. Han, Y. Jeong, J. Paek. Opt. Lett., 29 (1), 116 (2004). DOI: 10.1364/OL.29.000116
  13. T. Xie, D. Mukai, S. Guo, M. Brenner, Z. Chen. Opt. Lett., 30 (14), 1803 (2005). DOI: 10.1364/OL.30.001803
  14. M. Pochechuev, I. Fedotov, A. Zheltikov. Appl. Phys. Lett., 113, 191102 (2018). DOI: 10.1063/1.5054316
  15. A. Orth, M. Ploschner, E. Wilson, I. Maksymov, B. Gibson. Sci. Adv., 5 (4), eaav1555 (2019). DOI: 10.1126/sciadv.aav1555
  16. R.P.J. Barretto, T.H. Ko, J.C. Jung, T.J. Wang, G. Capps, A.C. Waters, Y. Ziv, A. Attardo, L. Recht, M.J. Schnitzer. Nat. Med., 17, 223 (2011). DOI: 10.1038/nm.2292
  17. V. Szabo, C. Ventalon, V. DeSars, J. Bradley, V. Emiliani. Neuro Resource, 84 (6), 1157 (2014). DOI: 10.1016/j.neuron.2014.11.005
  18. A. Yetisen, H. Qu, A. Manbachi, H. Butt, M. Dokmeci, J. Hinestroza, M. Skorobogatiy, A. Khademhosseini, S. Yun. ACS Nano, 10 (3), 3042 (2016). DOI: 10.1021/acsnano.5b08176
  19. P. Gutruf, C. Good, J. Rogers. APL Photonics, 3, 120901 (2018). DOI: 10.1063/1.5040256
  20. D. Kim, J. Moon, M. Kim, T. Yang, J. Kim, E. Chung, W. Choi. Opt. Lett., 39 (7), 1921 (2014). DOI: 10.1364/OL.39.001921
  21. J.-H. Han, S. Yoon. Opt. Lett., 36 (16), 3212 (2011). DOI: 10.1364/OL.36.003212
  22. J. Shao, W.-C. Liao, R. Liang, K. Barnard. Opt. Lett., 43 (8), 1906 (2018). DOI: 10.1364/OL.43.001906
  23. J. Shao, J. Zhang, X. Huang, R. Liang, K. Barnard. Opt. Lett., 44 (5), 1080 (2019). DOI: 10.1364/OL.44.001080
  24. A. Porat, E.R. Andresen, H. Rigneault, D. Oron, S. Gigan, O. Katz. Opt. Express, 24 (15), 16835 (2016). DOI: 10.1364/OE.24.016835
  25. K. Zaytsev, G. Katyba, N. Chernomyrdin, I. Dolganova, A. Kucheryavenko, A. Rossolenko, V. Tuchin, V. Kurlov, M. Skorobogatiy. Adv. Opt. Mater., 8 (18), 2000307 (2020). DOI: 10.1002/adom.202000307
  26. R. Stantchev, B. Sun, S. Hornett, P. Hobson, G. Gibson, M. Padgett, E. Hendry. Sci. Adv., 2, e1600190 (2016). DOI: 10.1126/sciadv.1600190
  27. Y. Choi, C. Yoon, M. Kim, T.D. Yang, C. Fang-Yen, R. Dasari, K. Lee, W. Choi. Phys. Rev. Lett., 109, 203901 (2012). DOI: 10.1103/PhysRevLett.109.203901
  28. P. Belov, C. Simovski, P. Ikonen. Phys. Rev. B, 71, 193105 (2005). DOI: 10.1103/PhysRevB.71.193105
  29. P. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, Y. Hao. Appl. Phys. Lett., 89, 262109 (2006). DOI: 10.1063/1.2424557
  30. K. Kaltenecker, A. Tuniz, S. Fleming, A. Argyros, B. Kuhlmey, M. Walther, B. Fischer. Optica, 3 (5), 458 (2016). DOI: 10.1364/OPTICA.3.000458
  31. A. Tuniz, B. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, S. Fleming. Appl. Phys. Lett., 96, 191101 (2010). DOI: 10.1063/1.3428576
  32. M. Habib, A. Stefani, S. Atakaramians, S. Fleming, A. Argyros, B. Kuhlmey. Appl. Phys. Lett., 110, 101106 (2017). DOI: 10.1063/1.4978445
  33. D.W. Vogt, J. Anthony, R. Leonhardt. Opt. Exp., 23 (26), 33359 (2015). DOI: 10.1364/OE.23.033359
  34. G. Katyba, K. Zaytsev, I. Dolganova, I. Shikunova, N. Chernomyrdin, S. Yurchenko, G. Komandin, I. Reshetov, V. Nesvizhevsky, V. Kurlov. Prog. Cryst. Growth Charact. Mater., 64 (4), 133 (2018). DOI: 10.1016/j.pcrysgrow.2018.10.002
  35. G. Katyba, K. Zaytsev, I. Dolganova, N. Chernomyrdin, V. Ulitko, S. Rossolenko, I. Shikunova, V. Kurlov. Prog. Cryst. Growth Charact. Mater., 67 (3), 100523 (2021). DOI: 10.1016/j.pcrysgrow.2021.100523
  36. G.M. Katyba, M. Skorobogatiy, D.G. Melikyants, N.V. Chernomyrdin, A.N. Perov, E.V. Yakovlev, I.N. Dolganova, I.E. Spektor, V.V. Tuchin, V.N. Kurlov, K.I. Zaytsev. Phys. Rev. Appl., 18, 034069 (2022). DOI: 10.1103/PhysRevApplied.18.034069
  37. D. Grischkowsky, S. Keiding, M. van Exter, Ch. Fattinger. J. Opt. Soc. Am. B, 7 (10), 2006 (1990). DOI: 10.1364/JOSAB.7.002006
  38. H. Chen, M. Buric, P. Ohodnicki, J. Nakano, B. Liu, B. Chorpening. Appl. Phys. Rev., 5, 011102 (2018). DOI: 10.1063/1.5010184
  39. I. Minin, O. Minin, G. Katyba, N. Chernomyrdin, V. Kurlov, K. Zaytsev, L. Yue, Z. Wang, D. Christodoulides. Appl. Phys. Lett., 114, 031105 (2019). DOI: 10.1063/1.5065899
  40. P. Martin. Phys. Rev., 161, 143 (1967). DOI: 10.1103/PhysRev.161.143
  41. G.M. Katyba, D.G. Melikyants, N.V. Chernomyrdin, V.N. Kurlov, K.I. Zaytsev. Opt. Engineering, 60 (8), 082010 (2021). DOI: 10.1117/1.OE.60.8.082010. (03)90001-5
  42. N.V. Chernomyrdin, G.M. Katyba, A.A. Gavdush, T.V. Frolov, I.N. Dolganova, V.N. Kurlov, K.I. Zaytsev. Proc. SPIE, 11088, 110880I (2019). DOI: 10.1117/12.2528741
  43. N.V. Abrosimov, V.N. Kurlov, S.N. Rossolenko. Prog. Cryst. Growth Charact. Mater., 46 (1-2), 1 (2003). DOI: 10.1016/S0960-8974(03)90001-5
  44. P.I. Antonov, V.N. Kurlov. Prog. Cryst. Growth Charact. Mater., 44 (2), 63 (2002). DOI: 10.1016/S0960-8974(02)00005-0
  45. G. Katyba, K. Zaytsev, N. Chernomyrdin, I. Shikunova, G. Komandin, V. Anzin, S. Lebedev, I. Spektor, V. Karasik, S. Yurchenko, I. Reshetov, V. Kurlov, M. Skorobogatiy. Adv. Opt. Mater., 6 (22), 1800573 (2018). DOI: 10.1002/adom.201800573
  46. K.I. Zaytsev, G.M. Katyba, V.N. Kurlov, I.A. Shikunova, V.E. Karasik, S.O. Yurchenko. IEEE Trans. Terahertz Sci. Technol., 6 (4), 576 (2016). DOI: 10.1109/TTHZ.2016.2555981
  47. G.M. Katyba, N.V. Chernomyrdin, I.N. Dolganova, A.A. Pronin, I.V. Minin, O.V. Minin, K.I. Zaytsev, V.N. Kurlov. Proc. SPIE, 11164, 111640G (2019). DOI: 10.1117/12.2536305
  48. E. Yakovlev, K. Zaytsev, I. Dolganova, S. Yurchenko, IEEE Trans. Terahertz Sci. Technol., 5 (5), 810 (2015). DOI: 10.1109/TTHZ.2015.2460671
  49. Lumerical Mode Solutions. [Electronic source]. URL: https://www.lumerical.com
  50. V.V. Gerasimov, B.A. Knyazev, A.K. Nikitin, G.N. Zhizhin. Appl. Phys. Lett., 98, 171912 (2011). DOI: 10.1063/1.3584130
  51. T.H. Isaaca, W.L. Barnes, E. Hendry. Appl. Phys. Lett., 93, 241115 (2008). DOI: 10.1063/1.3049350
  52. M.A. Ordal, R.J. Bell, R.W. Alexander, L.L. Long, M.R. Querry. Appl. Opt., 24 (24), 4493 (1985). DOI: 10.1364/AO.24.004493
  53. M.S. Islam, C.M.B. Cordeiro, M.A.R. Franco, J. Sultana, A.L.S. Cruz, D. Abbott. Opt. Express, 28 (11), 16089 (2020). DOI: 10.1364/OE.389999
  54. D.V. Lavrukhin, A.E. Yachmenev, I.A. Glinskiy, R.A. Khabibullin, Y.G. Goncharov, M. Ryzhii, T. Otsuji, I.E. Spector, M. Shur, M. Skorobogatiy, K.I. Zaytsev, D.S. Ponomarev. AIP Adv., 9, 015112 (2019). DOI: 10.1063/1.5081119
  55. V. Setti, L. Vincetti, A. Argyros. Opt. Express, 21 (3), 3388 (2013). DOI: 10.1364/OE.21.003388
  56. T. Ma, A. Markov, L. Wang, M. Skorobogatiy. Opt. Express, 23 (6), 7856 (2015). DOI: 10.1364/OE.23.007856
  57. A. Markov, M. Skorobogatiy. Appl. Phys. Lett., 103, 181118 (2013). DOI: 10.1364/OE.21.012728
  58. D.F. Gardner, M. Tanksalvala, E.R. Shanblatt, X. Zhang, B.R. Galloway, C.L. Porter, R. Karl Jr., C. Bevis, D.E. Adams, H.C. Kapteyn, M.M. Murnane, G.F. Mancini. Nat. Photonics, 11, 259 (2017). DOI: 10.1364/LS.2017.LM3F.4

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru