The influence of PH on the properties of carbon dots with different surface functionalization: sizes and photoluminescence quantum yield
Khmeleva M. Yu. 1, Laptinskiy K. A. 2, Dolenko T. A. 1
1Lomonosov Moscow State University, Moscow, Russia
2Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow, Russia
Email: khmeliova.maria@gmail.com, laptinskiy@physics.msu.ru, tdolenko@mail.ru

PDF
In this work carbon dots synthesized by the hydrothermal method and subsequent functionalization of the surface with carboxyl and hydroxyl groups were explored. As a result of studying the optical and colloidal properties of monofunctionalized carbon dots, a significant effect of the acidity of the nanoparticle environment on them was found. It has been found that for the photoluminescence quantum yield of carbon dots the greatest changes occur in the pH range from 2 to 5 for carbon dots with carboxyl surface groups and from 8 to 12 for carbon dots with hydroxyl groups. The mechanisms of the influence of surface functional groups on the photoluminescence of carbon dots with a change in the pH of the suspension are proposed. Keywords: carbon dots, photoluminescence spectroscopy, nanosensors, pH, surface functionalization, aggregation. DOI: 10.61011/EOS.2023.06.56662.104-23
  1. M. Jorns, D. Pappas. Nanomaterials, 11 (6), 1448 (2021). DOI: 10.3390/nano11061448
  2. B.D. Mansuriya, Z. Altintas. Nanomaterials, 11 (10), 2525 (2021). DOI: 10.3390/nano11102525
  3. X. Yan, X. Cui, L. Li. J. Am. Chem. Soc., 132 (17), 5944 (2010). DOI: 10.1021/ja1009376
  4. O.E. Sarmanova, K.A. Laptinskiy, M.Yu. Khmeleva, S.A. Burikov, S.A. Dolenko, A.E. Tomskaya, T.A. Dolenko. Spectrochim. Acta A, 258, 119861 (2021). DOI: 10.1016/j.saa.2021.119861
  5. A. Nair, J.T. Haponiuk, S. Thomas, S. Gopi. Biomed. Pharmacoth., 132, 110834 (2020). DOI: 10.1016/j.biopha.2020.110834
  6. O.E. Sarmanova, S.A. Burikov, S.A. Dolenko, I.V. Isaev, K.A. Laptinskiy, N. Prabhakar, D.S. Karaman, J.M. Rosenholm, O.A. Shenderova, T.A. Dolenko. Nanomedicine: Nanotechnol. Biol. Med., 14 (4), 1371 (2018). DOI: 10.1016/j.nano.2018.03.009
  7. T.A. Dolenko, S.A. Burikov, A.M. Vervald, I.I. Vlasov, S.A. Dolenko, K.A. Laptinskiy, J.M. Rosenholm, O.A. Shenderova. J. Biomed. Opt., 19 (11), 117007 (2014). DOI: 10.1117/1.jbo.19.11.117007
  8. M.Yu. Khmeleva, K.A. Laptinsky, P.S. Kasyanova, A.E. Tomskaya, T.A. Dolenko, Opt. i spektr., 130 (6), 882 (2022) (in Russian). DOI: 10.21883/OS.2022.06.52630.36-22
  9. S. Zhu, Y. Song, J. Wang, H. Wan, Y. Zhang, Y. Ning, B. Yang. Nano Today, 13, 10 (2017). DOI: 10.1016/j.nantod.2016.12.006
  10. X. Miao, D. Qu, D. Yang, B. Nie, Y. Zhao, H. Fan, Z. Sun. Adv. Mater., 30 (1), 1704740 (2017). DOI: 10.1002/adma.201704740
  11. J. Yu, C. Liu, K. Yuan, Z. Lu, Y. Cheng, L. Li, X. Zhang, P. Jin, F. Meng, H. Liu. Nanomaterials, 8 (4), 233 (2018). DOI: 10.3390/nano8040233
  12. Q. Zhang, R. Wang, B. Feng, X. Zhong, K. Ostrikov. Nature Commun., 12 (1) (2021). DOI: 10.1038/s41467-021-27071-4
  13. C. Liu, F. Zhang, J. Hu, W. Gao, M. Zhang. Front. Chem., 8 (2021). DOI: 10.3389/fchem.2020.605028
  14. A.M. Vervald, A.V. Lachko, O.S. Kudryavtsev, O.A. Shenderova, S.V. Kuznetsov, I.I. Vlasov, T.A. Dolenko. J. Phys. Chem. C, 125|,(33), 18247 (2021). DOI: 10.1021/acs.jpcc.1c03331
  15. Y. Su, Z. Xie, M. Zheng. J. Coll. Interface Sci., 573, 241 (2020). DOI: 10.1016/j.jcis.2020.04.004
  16. A.O. da Silva, M.O. Rodrigues, M.H. Sousa, A.F.C. Campos. Coll. Surf. A, 621, 126578 (2021). DOI: 10.1016/j.colsurfa.2021.126578
  17. J. Ren, F. Weber, F. Weigert, Y. Wang, S. Choudhury, J. Xiao, I. Lauermann, U. Resch-Genger, A. Bande, T. Petit. Nanoscale, 11|,(4), 2056 (2019). DOI: 10.1039/C8NR08595A
  18. Lu P.-J. World. J. Gastroenterol., 16 (43), 5496 (2010). DOI: 10.3748/wjg.v16.i43.5496
  19. T. Takeshima, M. Adler, M. Nacchiero, J. Rudick, D.A. Dreiling. Am. J. Gastroenterol, 67 (1), 54 (1977)
  20. Bordwell pKa Table: https://organicchemistrydata.org/ hansreich/resources/pka/\#pka_general (2021)
  21. F. Menges. Spectragryph --- optical spectroscopy software. Version 1.2.15 (2020). http://www.effemm2.de/spectragryph/
  22. J.R. Lakowicz. Principles of Fluorescence Spectroscopy (Springer, 2006)
  23. K.A. Laptinskiy, S.A. Burikov, S.V. Patsaeva, I.I. Vlasov, O.A. Shenderova, T. A. Dolenko. Spectrochim. Acta A, 229, 117879 (2020). DOI: 10.1016/j.saa.2019.1178793
  24. D.F. Eaton. Pure Appl. Chem., 60, 1107 (1988)
  25. P. Zhou, Z. Tang, P. Li, J. Liu. J. Phys. Chem. Lett., 12 (28), 6478 (2021). DOI: 10.1021/acs.jpclett.1c01774

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru