Diagnostics of harmful impurities in aqueous media using spectroscopic methods and machine learning algorithms
Laptinskiy K. A.
1, Burikov S.A.
1,2, Sarmanova O.E.
2, Vervald A.M.
2, Utegenova L.S.2, Plastinin I.V.
1, Dolenko T. A.
1,2
1Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow, Russia
2Department of Physics, Lomonosov Moscow State University, Moscow, Russia
Email: laptinskiy@physics.msu.ru, sergey.burikov@gmail.com, oe.sarmanova@physics.msu.ru, alexey.vervald@physics.msu.ru, plastinin_ivan@mail.ru, tdolenko@mail.ru
The results of the development of a method for diagnosing 8-component aqueous solutions containing lithium, ammonium, iron (III), nickel, copper and zinc cations, as well as sulfate and nitrate anions, by IR absorption spectra and optical density spectra using artificial neural networks are presented. The application of artificial neural networks to the obtained arrays of spectroscopic data made it possible to ensure the simultaneous determination of the studied ions in a multicomponent mixture with an accuracy that satisfies the needs of environmental monitoring of natural and waste waters, as well as diagnostics of technological environments. Keywords: diagnostics of aqueous environments, spectroscopy, IR spectroscopy, absorption spectroscopy, machine learning methods, neural networks. DOI: 10.61011/EOS.2023.06.56664.106-23
- World Water Assessment Programme - UNESCO. [Electronic source]. https://unesdoc.unesco.org/ark:/48223/pf0000215644
- Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet). Official web-site. [Electronic source]. https://www.meteorf.gov.ru/upload/iblock/981/2022-%D1% 84%D0%B5%D0%B2%D1%80%D0%B0%D0%BB% D1%8C-%D0%BC%D0%B5%D1%81%D1%8F%D1%87% D0%BD%D1%8B%D0%B9%20%D0%BE%D0%B1%D0% B7%D0%BE%D1%80%20%D0%BF%D0%BE%20%D0% A0%D0%BE%D1%81%D1%81%D0%B8%D0%B9%D1% 81%D0%BA%D0%BE%D0%B9%20%D0%A4%D0%B5% D0%B4%D0%B5%D1%80%D0%B0%D1%86%D0%B8% D0%B8.docx
- A.Q. Alorabi, M. Abdelbaset, S.A. Zabin. Chemosensors, 8 (1), 1 (2019). DOI: 10.3390/chemosensors8010001
- A.V. Mochalov, Sovremennye naukoemkie tekhnologii, 8, 2 (333) (in Russian)
- I. Isaev, N. Trifonov, O. Sarmanova, S. Burikov, T. Dolenko, K. Laptinskiy, S. Dolenko. SPIE proceedings, 11458, 1 (2020). DOI: 10.1117/12.2564398
- P.S. Fomina, M.A. Proskurnin, B. Mizaikoff, D.S. Volkov. Critical Reviews in Analytical Chemistry, 1 (2022). DOI: 10.1080/10408347.2022.2041390
- S. Dolenko, A. Efitorov, S. Burikov, T. Dolenko, K. Laptinskiy, I. Persiantsev. Engineering Applications of Neural Networks, 109, 1 (2015). DOI: 10.1007/978-3-319-23983-5_11
- S.A. Burikov, T.A. Dolenko, V.V. Fadeev, A.V. Sugonyaev. Pattern Recognition and Image Analysis, 17 (4), 554 (2007). DOI: 10.1134/s1054661807040141
- Y. LeCun, Y. Bengio, G. Hinton. Nature, 521 (7553), 436 (2015). DOI: 10.1038/nature14539
- D. Ferguson, A. Henderson, E.F. McInnes, R. Lind, J. Wildenhain, P. Gardner. The Analyst, 147 (16), 3709 (2022). DOI: 10.1039/d2an00775d
- T.A. Dolenko, S.A. Burikov, E.N. Vervald, A.O. Efitorov, K.A. Laptinskiy, O.E. Sarmanova, S.A. Dolenko. Laser Physics, 27 (2), 025203 (2017). DOI: 10.1088/1555-6611/aa51a7
- L.F. Dolina. Sovremennaya tekhnika i tekhnologii dlya ochistki stochnykh vod ot soley tyazhelykh metallov (Kontinent, Dnepropetrovsk, 2008)
- I.V. Gerdova, S.A. Dolenko, T.A. Dolenko, I.G. Persiantsev, V.V. Fadeev, I.V. Churina, Izv. RAN. Seriya fizicheskaya, 66 (8), 1116 (2002) (in Russian)
- M. Bravo, A.C. Olwiert, B. Oelckers. J. Chilean Chem. Society, 54 (1), 1 (2009). DOI: 10.4067/s0717-97072009000100022
- M. Malik, K.H. Chan, G. Azimi. RSC Advances, 11 (45), 28014 (2021). DOI: 10.1039/d1ra03962h
- C.L. Aravinda, S.M. Mayanna, V.S. Muralidharan. J. Chem. Sciences, 112 (5), 543 (2000). DOI: 10.1007/bf02709287
- C. Loures, M. Alc\^antara, H. Filho, A. Teixeira, F. Silva, T. Paiva, G. Samanamud. Intern. Rev. Chem. Engineering, 5 (2) 102 (2013). DOI: 10.15866/ireche.v5i2.6909
- W. Mantele, E. Deniz. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 173, 965 (2017). DOI: 10.1016/j.saa.2016.09.037
- P. Verma, A. Kundu, M. Puretz, C. Dhoonmoon, O. Chegwidden, C. Londergan, M. Cho. J. Phys. Chem. B, 122 (9), 2587 (2017). DOI: 10.1021/acs.jpcb.7b09641
- S.A. Burikov, T.A. Dolenko, V.V. Fadeev, I.I. Vlasov. Laser Physics, 17 (9), 1255 (2007). DOI: 10.1134/S1054660X0710012X
- S.A. Burikov, T.A. Dolenko, V.V. Fadeev, A.V. Sugonyaev. Laser Physics, 15 (8), 1 (2005)
- D. Goebbert, E. Garand, T. Wende, R. Bergmann, G. Meijer, K. Asmis, D. Neumark. J. Phys. Chem. A, 113 (26), 7584 (2009). DOI: 10.1021/jp9017103
- N. Kitadai, T. Sawai, R. Tonoue, S. Nakashima, M. Katsura, K. Fukushi. J. Solution Chemistry, 43 (6), 1055 (2014). DOI: 10.1007/s10953-014-0193-0
- S.A. Burikov, S.A. Dolenko, T.A. Dolenko, I.G. Persiantsev. Optical Memory and Neural Networks (Information Optics), 19 (2), 140 (2010). DOI: 10.3103/S1060992X10020049
- S.A. Dolenko, S.A. Burikov, T.A. Dolenko, I.G. Persiantsev. Pattern Recognition and Image Analysis, 22 (4), 551 (2012). DOI: 10.1134/S1054661812040049
- Technical description of the Dropout method [Electronic source]. https://pgaleone.eu/deep-learning/regularization/ 2017/01/10/anaysis-of-dropout/\#fnref:1
- Technical description of the Adam method [Electronic source]. https://www.tensorflow.org/api_docs/python/tf/keras/ optimizers/Adam
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.