Diagnostics of harmful impurities in aqueous media using spectroscopic methods and machine learning algorithms
Laptinskiy K. A. 1, Burikov S.A. 1,2, Sarmanova O.E. 2, Vervald A.M. 2, Utegenova L.S.2, Plastinin I.V. 1, Dolenko T. A. 1,2
1Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow, Russia
2Department of Physics, Lomonosov Moscow State University, Moscow, Russia
Email: laptinskiy@physics.msu.ru, sergey.burikov@gmail.com, oe.sarmanova@physics.msu.ru, alexey.vervald@physics.msu.ru, plastinin_ivan@mail.ru, tdolenko@mail.ru

PDF
The results of the development of a method for diagnosing 8-component aqueous solutions containing lithium, ammonium, iron (III), nickel, copper and zinc cations, as well as sulfate and nitrate anions, by IR absorption spectra and optical density spectra using artificial neural networks are presented. The application of artificial neural networks to the obtained arrays of spectroscopic data made it possible to ensure the simultaneous determination of the studied ions in a multicomponent mixture with an accuracy that satisfies the needs of environmental monitoring of natural and waste waters, as well as diagnostics of technological environments. Keywords: diagnostics of aqueous environments, spectroscopy, IR spectroscopy, absorption spectroscopy, machine learning methods, neural networks. DOI: 10.61011/EOS.2023.06.56664.106-23
  1. World Water Assessment Programme - UNESCO. [Electronic source]. https://unesdoc.unesco.org/ark:/48223/pf0000215644
  2. Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet). Official web-site. [Electronic source]. https://www.meteorf.gov.ru/upload/iblock/981/2022-%D1% 84%D0%B5%D0%B2%D1%80%D0%B0%D0%BB% D1%8C-%D0%BC%D0%B5%D1%81%D1%8F%D1%87% D0%BD%D1%8B%D0%B9%20%D0%BE%D0%B1%D0% B7%D0%BE%D1%80%20%D0%BF%D0%BE%20%D0% A0%D0%BE%D1%81%D1%81%D0%B8%D0%B9%D1% 81%D0%BA%D0%BE%D0%B9%20%D0%A4%D0%B5% D0%B4%D0%B5%D1%80%D0%B0%D1%86%D0%B8% D0%B8.docx
  3. A.Q. Alorabi, M. Abdelbaset, S.A. Zabin. Chemosensors, 8 (1), 1 (2019). DOI: 10.3390/chemosensors8010001
  4. A.V. Mochalov, Sovremennye naukoemkie tekhnologii, 8, 2 (333) (in Russian)
  5. I. Isaev, N. Trifonov, O. Sarmanova, S. Burikov, T. Dolenko, K. Laptinskiy, S. Dolenko. SPIE proceedings, 11458, 1 (2020). DOI: 10.1117/12.2564398
  6. P.S. Fomina, M.A. Proskurnin, B. Mizaikoff, D.S. Volkov. Critical Reviews in Analytical Chemistry, 1 (2022). DOI: 10.1080/10408347.2022.2041390
  7. S. Dolenko, A. Efitorov, S. Burikov, T. Dolenko, K. Laptinskiy, I. Persiantsev. Engineering Applications of Neural Networks, 109, 1 (2015). DOI: 10.1007/978-3-319-23983-5_11
  8. S.A. Burikov, T.A. Dolenko, V.V. Fadeev, A.V. Sugonyaev. Pattern Recognition and Image Analysis, 17 (4), 554 (2007). DOI: 10.1134/s1054661807040141
  9. Y. LeCun, Y. Bengio, G. Hinton. Nature, 521 (7553), 436 (2015). DOI: 10.1038/nature14539
  10. D. Ferguson, A. Henderson, E.F. McInnes, R. Lind, J. Wildenhain, P. Gardner. The Analyst, 147 (16), 3709 (2022). DOI: 10.1039/d2an00775d
  11. T.A. Dolenko, S.A. Burikov, E.N. Vervald, A.O. Efitorov, K.A. Laptinskiy, O.E. Sarmanova, S.A. Dolenko. Laser Physics, 27 (2), 025203 (2017). DOI: 10.1088/1555-6611/aa51a7
  12. L.F. Dolina. Sovremennaya tekhnika i tekhnologii dlya ochistki stochnykh vod ot soley tyazhelykh metallov (Kontinent, Dnepropetrovsk, 2008)
  13. I.V. Gerdova, S.A. Dolenko, T.A. Dolenko, I.G. Persiantsev, V.V. Fadeev, I.V. Churina, Izv. RAN. Seriya fizicheskaya, 66 (8), 1116 (2002) (in Russian)
  14. M. Bravo, A.C. Olwiert, B. Oelckers. J. Chilean Chem. Society, 54 (1), 1 (2009). DOI: 10.4067/s0717-97072009000100022
  15. M. Malik, K.H. Chan, G. Azimi. RSC Advances, 11 (45), 28014 (2021). DOI: 10.1039/d1ra03962h
  16. C.L. Aravinda, S.M. Mayanna, V.S. Muralidharan. J. Chem. Sciences, 112 (5), 543 (2000). DOI: 10.1007/bf02709287
  17. C. Loures, M. Alc\^antara, H. Filho, A. Teixeira, F. Silva, T. Paiva, G. Samanamud. Intern. Rev. Chem. Engineering, 5 (2) 102 (2013). DOI: 10.15866/ireche.v5i2.6909
  18. W. Mantele, E. Deniz. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 173, 965 (2017). DOI: 10.1016/j.saa.2016.09.037
  19. P. Verma, A. Kundu, M. Puretz, C. Dhoonmoon, O. Chegwidden, C. Londergan, M. Cho. J. Phys. Chem. B, 122 (9), 2587 (2017). DOI: 10.1021/acs.jpcb.7b09641
  20. S.A. Burikov, T.A. Dolenko, V.V. Fadeev, I.I. Vlasov. Laser Physics, 17 (9), 1255 (2007). DOI: 10.1134/S1054660X0710012X
  21. S.A. Burikov, T.A. Dolenko, V.V. Fadeev, A.V. Sugonyaev. Laser Physics, 15 (8), 1 (2005)
  22. D. Goebbert, E. Garand, T. Wende, R. Bergmann, G. Meijer, K. Asmis, D. Neumark. J. Phys. Chem. A, 113 (26), 7584 (2009). DOI: 10.1021/jp9017103
  23. N. Kitadai, T. Sawai, R. Tonoue, S. Nakashima, M. Katsura, K. Fukushi. J. Solution Chemistry, 43 (6), 1055 (2014). DOI: 10.1007/s10953-014-0193-0
  24. S.A. Burikov, S.A. Dolenko, T.A. Dolenko, I.G. Persiantsev. Optical Memory and Neural Networks (Information Optics), 19 (2), 140 (2010). DOI: 10.3103/S1060992X10020049
  25. S.A. Dolenko, S.A. Burikov, T.A. Dolenko, I.G. Persiantsev. Pattern Recognition and Image Analysis, 22 (4), 551 (2012). DOI: 10.1134/S1054661812040049
  26. Technical description of the Dropout method [Electronic source]. https://pgaleone.eu/deep-learning/regularization/ 2017/01/10/anaysis-of-dropout/\#fnref:1
  27. Technical description of the Adam method [Electronic source]. https://www.tensorflow.org/api_docs/python/tf/keras/ optimizers/Adam

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru