Study of the metrological characteristics of a spatial frequency domain imaging system for biological tissues structure visualization
Zakharov M. A.
1, Semenova A.S.
1, Kolpakov A.V.
11Bauman Moscow State Technical University, Moscow, Russia
Email: alexanderkolpakov@bmstu.ru
The work is devoted to the study of the measurement accuracy of the spatial frequency domain imaging system for the detection and objective numerical evaluation of optical inhomogeneities in biological tissues. As a result of the initial stage of experimental studies on a stand simulating a spatial frequency domain imaging system, the operating range of spatial frequencies of illuminating irradiation modulation was determined, which ensures maximum reproducibility of the measurement results, and the possibility of achieving a relative measurement error of optical parameters of no more than 10% was shown. Keywords: spatial frequency domain imaging, optical properties, biological tissues, spectrophotometry, optical imaging, metrological characteristics, quantitative assessment, measurement errors. DOI: 10.61011/EOS.2023.06.56670.110-23
- A.N. Bashkatov, E.A. Genina, V.V. Tuchin, Almanakh klinicheskoy meditsiny, 17 (1), 39--42 (2008) (in Russian)
- V.V. Tuchin, Lazery i volokonnaya optika v biomeditsinskikh issledovaniyakh (Izd-vo Sarat. un-ta, Saratov, 1997). ISBN 978-5-9221-1278-9 (in Russian)
- F. Bevilacqua, D. Piguet, P. Marquet, J.D. Gross, B.J. Tromberg, C. Depeursinge. Appl. Opt. theory and practice in Iberoamerica, 59 (13), D111--D117 (2020). DOI: 10.1364/AO.384614
- S. Gioux, A. Mazhar, D.J. Cuccia. J. Biomed. Opt., 24 (7), 071613 (2019). DOI: 10.1117/1.JBO.24.7.071613
- Y. Yamada, H. Suzuki, Y. Yamashita. Applied Sciences, 9 (6), 1127 (2019). DOI: 10.3390/app9061127
- Z. Sun, D. Hu, Z. Wang, L. Xie, Y. Ying. Photonics, 8 (5), 162 (2021). DOI: 10.3390/photonics8050162
- A. Ponticorvo, R. Rowland, M. Baldado, D.M. Burmeister, R.J. Christy, N.P. Bernal, A.J. Durkin. Burns, 45 (2), 450--460 (2019). DOI: 10.1016/j.burns.2018.09.026
- Y. Zhao, J.R. Maher, J. Kim, M.A. Selim, H. Levinson, A. Wax. Biomed. Opt. Expr., 6 (9), 3339--3345 (2015). DOI: 10.1364/BOE.6.003339
- B.E. Urban, H.M. Subhash. Biomed. Opt. Expr., 12 (11), 6954--6968 (2021).DOI: 10.1364/BOE.439663
- L. Zhang, A.D. Bounds, J.P. Fleming, J.M. Girkin. In: Latin AmericaOptics and Photonics (LAOP) Conference 2022, ed. by Technical Digest Series (Optica Publishing Group), paper Tu1B.7, Recife Brazil, 7.11 August 2022. DOI: 10.1364/LAOP.2022.Tu1B.7
- Y. Li, M. Guo, X. Qian, W. Lin, Y. Zheng, K. Yu, B. Zeng, Z. Xu, C. Zheng, M. Xu. Biomed. Opt. Express, 11 (8), 4471--4483 (2020). DOI: 10.1364/BOE.394929
- P. Lanka, L. Yang, D. Orive-Miguel, J.D. Veesa, et al. J. Biomed. Opt., 27 (7), 074716 (2022). DOI: 10.1117/1.JBO.27.7.074716
- Y. Luo, X. Jiang, X. Fu. Foods, 10 (9), 2151 (2021). DOI: 10.3390/foods10092151
- E. Aguenounon, J.T. Smith, M. Al-Taher, M. Diana, X. Intes, S. Gioux. Biomed. Opt. Expr., 11 (10), 5701--5716 (2020). DOI: 10.1364/BOE.397681
- M.B. Applegate, K. Karrobi, J.P. Angelo Jr., W.M. Austin, S.M. Tabassum, E. Aguenounon, K. Tilbury, R.B. Saager, S. Gioux, D.M. Roblyer. J. Biomed. Opt., 25 (1), 016002 (2020). DOI: 10.1117/1.JBO.25.1.016002
- Labview control software for the openSFDI platform. [Electronic source]. URL: https://github.com/mbapplegate/openSFDI-control (date of access: 24.04.2020)
- S.A. Yushina, N.N. Kuznetsov, A.V. Kolpakov, Opt. i spektr., 129 (9), 1208 (2021) (in Russian). DOI: 10.21883/OS.2021.09.51352.1982-21
- ISS company web-site. Inc. Tissue oximeter. OxiplexTS. [Electronic source]. URL: http://www.iss.com/biomedical/ instruments/oxiplexTS.html
- L.P. Safonova, V.G. Orlova, A.N. Shkarubo, Opt. i spektr., 126 (6), 820--831 (2019) (in Russian). DOI: 10.21883/OS.2019.06.47778.58-19
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.