Combination of hollow-core sapphire waveguide and immersion lens for ultra-high resolution THz endoscopy
Kucheryavenko A. S.
1, Zhelnov V. A.
1, Chernomyrdin N. V.
2, Kurlov V. N.
1, Zaytsev K. I.
2, Katyba G. M.
11Osipyan Institute of Solid State Physics RAS, Chernogolovka, Russia
2Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Email: ans.kucher@mail.ru
The development of terahertz (THz) imaging methods is hampered by the low spatial resolution of traditional diffraction-limited imaging systems, mainly due to the large wavelength of used radiation (from a few of mm to tens of μm). To solve this problem, we have proposed a new method of THz endoscopy with subwavelength spatial resolution, which is designed to study hard-to-reach areas of living organisms in vivo. A hollow-core sapphire tube with polytetrafluoroethylene outer coating is used as a waveguide, in which the antiresonant principle of radiation transmission is implemented. The waveguide and the immersion lens are optimized to provide high optical characteristics in a given wavelength range to ensure the best focusing. Two immersion lenses made of sapphire and silicon were developed and fabricated, which were then mounted on plane-parallel windows fixed on the rear end of the waveguide. The study of the field intensity distribution on the shadow side of the glqq waveguide-lens" system revealed a focal spot diameter of ~= 0.2λ in the case of a lens made of sapphire and ~= 0.3λ in the case of a lens made of crystal silicon at a wavelength λ = 500 λm, which significantly exceeds the Abbe diffraction limit. This agrees with our numerical predictions and demonstrates the promise of using the proposed endoscope for measurements with subwavelength resolution. Keywords: terahertz radiation, terahertz imaging, endoscopy, subwavelength spatial resolution, Abbe diffraction limit, solid immersion effect. DOI: 10.61011/EOS.2023.06.56674.123-23
- H. Guerboukha, K. Nallappan, M. Skorobogatiy. Adv. Opt. Photonics, 10 (4), 843 (2018). DOI: 10.1364/AOP.10.000843
- Z. Yan, L.-G. Zhu, K. Meng, W. Huang, Q. Shi. Trends Biotechnol., 40 (7), 816 (2022). DOI: 10.1016/j.tibtech.2021.12.002
- O.P. Cherkasova, D.S. Serdyukov, E.F. Nemova, A.S. Ratushnyak, A.S. Kucheryavenko, I.N. Dolganova, G. Xu, M. Skorobogatiy, I.V. Reshetov, P.S. Timashev, I.E. Spektor, K.I. Zaytsev, V.V. Tuchin. J. Biomed. Opt., 26 (09), (2021). DOI: 10.1117/1.JBO.26.9.090902
- C.D. Stoik, M.J. Bohn, J.L. Blackshire. Opt. Express, 16 (21), 17039 (2008). DOI: 10.1364/OE.16.017039
- S. Zhong, H. Shen, Y.-C. Shen, J.A. Zeitler, L. Ho, M. Evans, P.T. Taday, M. Pepper, T. Rades, K.C. Gordon, R. Muller, P. Kleinebudde. In: 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009), vol. 12, p. 1-2. DOI: 10.1109/ICIMW.2009.5324630
- J.A. Zeitler, P.F. Taday, D.A. Newnham, M. Pepper, K.C. Gordon, T. Rades. J. Pharmacy and Pharmacology, 59 (2), 209 (2007). DOI: 10.1211/jpp.59.2.0008
- K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue. Opt. Express, 11 (20), 2549 (2003). DOI: 10.1364/oe.11.002549
- Md.S. Islam, C.M.B. Cordeiro, M.A.R. Franco, J. Sultana, A.L.S. Cruz, D. Abbott. Opt. Express, 28 (11), 16089 (2020). DOI: 10.1364/OE.389999
- M. Mbonye, R. Mendis, D.M. Mittleman. Appl. Phys. Lett., 95 (23), 233506 (2009). DOI: 10.1063/1.3268790
- G. Xie, Y. Zhong, G. Li, C. She, X. Lu, F. Yue, S. Liu, C. Jing, Y. Cheng, J. Chu. Results Phys., 19, 103534 (2020). DOI: 10.1016/j.rinp.2020.103534
- S.R. Andrews. J. Phys. D. Appl. Phys., 47 (37), 374004 (2014). DOI: 10.1088/0022-3727/47/37/374004
- G. Xu, K. Nallappan, Y. Cao, M. Skorobogatiy. Sci. Rep., 12 (1), 4551 (2022). DOI: 10.1038/s41598-022-08334-6
- S.P. Jamison, R.W. McGowan, D. Grischkowsky. Appl. Phys. Lett., 76 (15), 1987 (2000). DOI: 10.1063/1.126231
- B. Ung, A. Mazhorova, A. Dupuis, M. Roze, M. Skorobogatiy. Opt. Express, 19 (26), B848 (2011). DOI: 10.1364/OE.19.00B848
- K. Wang, D.M. Mittleman. J. Opt. Soc. Am. B, 22 (9), 2001 (2005). DOI: 10.1364/JOSAB.22.002001
- Y. Cao, K. Nallappan, G. Xu, M. Skorobogatiy. Nature Communications, 13 (1), 4090 (2022). DOI: 10.1038/s41467-022-31590-z
- G.M. Katyba, K.I. Zaytsev, N. V Chernomyrdin, I.A. Shikunova, G.A. Komandin, V.B. Anzin, S.P. Lebedev, I.E. Spektor, V.E. Karasik, S.O. Yurchenko, I.V. Reshetov, V.N. Kurlov, M. Skorobogatiy. Adv. Opt. Mater., 6 (22), 1800573 (2018). DOI: 10.1002/adom.201800573
- B. You, D.J. Monk, D.R. Walt, Z. Yang, M. Zhang, Y. Liao, Q. Tian, Q. Li, Y. Zhang, Z. Zhuang, E. Fabry, A. Albertazzi, A.C. Hofmann, A.V. Fantin, J.M.C. Santos, J.Y. Lu, C.M. Chiu, C.C. Kuo, C.H. Lai, H.C. Chang, Y.J. Hwang, C.L. Pan, C.K. Sun. Opt. Exp., 24 (16), 18013 (2016). DOI: 10.1364/OE.24.018013
- G.M. Katyba, K.I. Zaytsev, I.N. Dolganova, N.V. Chernomyrdin, V.E. Ulitko, S.N. Rossolenko, I.A. Shikunova, V.N. Kurlov. Progress in Crystal Growth and Characterization of Materials, 67 (3), 100523 (2021). DOI: 10.1016/j.pcrysgrow.2021.100523
- G.M. Katyba, P.A. Chizhov, V.N. Kurlov, I.N. Dolganova, S.V. Garnov, K.I. Zaytsev, V.V. Bukin. Opt. Express, 30 (3), 4215 (2022). DOI: 10.1364/OE.447060
- G.M. Katyba, D.G. Melikyants, N.V. Chernomyrdin, V.N. Kurlov, K.I. Zaytsev. Opt. Eng., 60 (08), (2021). DOI: 10.1117/1.OE.60.8.082010
- D.S. Ponomarev, D.V. Lavrukhin, N.V. Zenchenko, T.V. Frolov, I.A. Glinskiy, R.A. Khabibullin, G.M. Katyba, V.N. Kurlov, T. Otsuji, K.I. Zaytsev. Opt. Lett., 47 (7), 1899 (2022). DOI: 10.1364/OL.452192
- K.I. Zaytsev, G.M. Katyba, N.V. Chernomyrdin, I.N. Dolganova, A.S. Kucheryavenko, A.N. Rossolenko, V.V. Tuchin, V.N. Kurlov, M. Skorobogatiy. Adv. Opt. Mater., 8 (18), 2000307 (2020). DOI: 10.1002/adom.202000307
- G.M. Katyba, M. Skorobogatiy, D.G. Melikyants, N.V. Chernomyrdin, A.N. Perov, E.V. Yakovlev, I.N. Dolganova, I.E. Spektor, V.V. Tuchin, V.N. Kurlov, K.I. Zaytsev. Phys. Rev. Appl., 18 (3), 034069 (2022). DOI: 10.1103/PhysRevApplied.18.034069
- Y.H. Lo, R. Leonhardt. Opt. Express, 16 (20), 15991 (2008). DOI: 10.1364/OE.16.015991
- N.C.J. Van Der Valk, P.C.M. Planken. Appl. Phys. Lett., 81 (9), 1558 (2002). DOI: 10.1063/1.1503404
- A.J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, R. Hillenbrand. Nano Lett., 8 (11), 3766 (2008). DOI: 10.1021/nl802086x
- N.V. Chernomyrdin, A.S. Kucheryavenko, G.S. Kolontaeva, G.M. Katyba, I.N. Dolganova, P.A. Karalkin, D.S. Ponomarev, V.N. Kurlov, I.V. Reshetov, M. Skorobogatiy, V.V. Tuchin, K.I. Zaytsev. Appl. Phys. Lett., 113 (11), 111102 (2018). DOI: 10.1063/1.5045480
- N.V. Chernomyrdin, M. Skorobogatiy, D.S. Ponomarev, V.V. Bukin, V.V. Tuchin, K.I. Zaytsev. Appl. Phys. Lett., 120 (11), 110501 (2022). DOI: 10.1063/5.0085906
- N.V. Chernomyrdin, M. Skorobogatiy, A.A. Gavdush, G.R. Musina, G.M. Katyba, G.A. Komandin, A.M. Khorokhorov, I.E. Spektor, V.V. Tuchin, K.I. Zaytsev. Optica, 8 (11), 1471 (2021). DOI: 10.1364/OPTICA.439286
- M.A. Duguay, Y. Kokubun, T.L. Koch, L. Pfeiffer. Appl. Phys. Lett., 49 (1), 13 (1986). DOI: 10.1063/1.97085
- Z. Zhu, T. Brown. Opt. Express, 10 (17), 853 (2002). DOI: 10.1364/OE.10.000853
- K.I. Zaytsev, G.M. Katyba, V.N. Kurlov, I.A. Shikunova, V.E. Karasik, S.O. Yurchenko. IEEE Trans. Terahertz. Sci. Technol., 6 (4), 576 (2016). DOI: 10.1109/TTHZ.2016.2555981
- N.V. Chernomyrdin, V.A. Zhelnov, A.S. Kucheryavenko, I.N. Dolganova, G.M. Katyba, V.E. Karasik, I.V. Reshetov, K.I. Zaytsev. Opt. Eng., 59 (06), 061605 (2019). DOI: 10.1117/1.oe.59.6.061605
- G.M. Katyba, K.I. Zaytsev, I.N. Dolganova, I.A. Shikunova, N.V. Chernomyrdin, S.O. Yurchenko, G.A. Komandin, I.V. Reshetov, V.V. Nesvizhevsky, V.N. Kurlov. Progress in Crystal Growth and Characterization of Materials, 64 (4), 133 (2018). DOI: 10.1016/j.pcrysgrow.2018.10.002
- A.A. Bushunov, M.K. Tarabrin, V.A. Lazarev. Laser Photon. Rev., 15 (5), 2000202 (2021). DOI: 10.1002/LPOR.202000202
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.