Discovery of the thermal process model from noisy data
Andreeva T. A. 1, Bykov N. Y. 1,2, Klimova A. K.2, Lukin A. Ya. 1
1Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
2ITMO University, St. Petersburg, Russia
Email: andreeva_ta@spbstu.ru, nbykov2006@yandex.ru, sashkaklimova1997@gmail.com, lukin_aya@spbstu.ru

PDF
A modification of the algorithm of the model generative design in the form of a partial differential equation for working with noisy data is proposed. Using the algorithm, the model of the heat and mass transfer process was restored from synthetic and original experimental data on heating the medium by a flooded heat source. The thermophysical parameters of the medium are determined, the possibility of using the algorithm to indicate the convection process based on data on the space-time distribution of temperature is shown. Keywords: generative design method, data-driven model, thermal conductivity equation, convection. DOI: 10.61011/TPL.2023.08.56679.19588
  1. A.A. Samarskii, P.N. Vabishevich, Computational heat transfer (Willey, Chichester, 1995)
  2. A.O. Vatul'yan, Koeffitsientnye obratnye zadachi mekhaniki (Fizmatlit, M., 2019). (in Russian)
  3. N.Y. Bykov, A.A. Hvatov, A.V. Kalyuzhnaya, A.V. Boukhanovsky, Tech. Phys. Lett., 48 (15), 50 (2022). DOI: 10.21883/TPL.2022.15.55281.18967
  4. A.V. Lykov, Teoriya teploprovodnosti(Vyssh. shk., M., 1967). (in Russian)
  5. A.I. Zhmakin, Tech. Phys., 66 (1), 1 (2021). DOI: 10.1134/S1063784221010242
  6. F. Hutter, L. Kotthoff, J. Vanschoren, Automated machine learning. Methods, systems, challenges (Springer, Cham, Switzerland, 2019). DOI: 10.1007/978-3-030-05318-5
  7. N.Y. Bykov, Nauch.-tekhn. vedomosti SPbGPU. Fiz.-mat. nauki, 15 (3), 83 (2022). DOI: 10.18721/JPM.15307 (in Russian)
  8. G. James, D. Witten, T. Hastie, R. Tibshirani, An introduction to statistical learning: with applications in R (Springer, N.Y., 2013). DOI: 10.1007/978-1-4614-7138-7
  9. B.G. Manukhin, M.E. Gusev, D.A. Kucher, S.A. Chivilikhin, O.V. Andreeva, Opt. Spectrosc., 119 (3), 392 (2015). DOI: 10.1134/S0030400X15090180
  10. N.B. Vargaftik, Handbook of physical properties of liquids and gases (Springer, Berlin-Heidelberg, 1975)
  11. V.A. Rabinovich, Z.Ya. Khavin, Kratkiy khimicheskiy spravochnik (Khimiya, L., 1972). (in Russian)
  12. Fizicheskie velichiny: spravochnik, pod red. I.S. Grigor'eva, E.Z. Meylikhova (Energoatomizdat, M., 1991). (in Russian)
  13. M.B. Priestley, Spectral analysis and time series (Academic Press, London, 1981).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru