Correlation between the abnormal enhancement of the separated flow and extraordinary pressure drops in the groove on the plate when the angle of inclination changes from 0 to 90o
Isaev S. A. 1,2, Guvernyuk S. V., Nikushchenko D. V.1, Sudakov A. G.2, Sinyavin A. A.3, Dubko E. B.2
1State Marine Technical University, St. Petersburg, Russia
2St. Petersburg State University of Civil Aviation, St. Petersburg, Russia
3Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia
Email: isaev3612@yandex.ru
A numerical and physical study of the air turbulent flow around a plate (with a long inclined groove of a moderate depth which has hemispherical ends) has been performed at the Reynolds number of 6.7· 104 which is determined by the width of the groove. The groove inclination angle with respect to the oncoming flow varies from 0 to 90o. The stationary near-wall flow of incompressible viscous medium was simulated by solving the Reynolds-averaged Navier-Stokes equations closed using the shear stress transport model. The static pressure distributions in single grooves were measured in a wind tunnel at the Institute of Mechanics of Moscow State University. There was determined a groove inclination angle at which the abnormal enhancement of the separated flow is observed. The resulting extraordinary pressure drops in the grooves were in a good agreement with ultrahigh absolute values of negative relative friction. Velocities of the return and secondary swirl flows turned out to be comparable with the oncoming flow velocity. Keywords: separated flow, inclined grooves, plate, abnormal enhancement, numerical simulation, wind tunnel experiment. DOI: 10.61011/TPL.2023.08.56684.19560
- S. Isaev, M. Gritckevich, A. Leontiev, I. Popov, Acta Astronaut., 163, 202 (2019). DOI: 10.1016/j.actaastro.2019.01.033
- S.A. Isaev, A.B. Mazo, D.V. Nikushchenko, I.A. Popov, A.G. Sudakov, Tech. Phys. Lett., 46 (11), 1064 (2020). DOI: 10.1134/S1063785020110073
- S.A. Isaev, Fluid Dyn., 57 (5), 558 (2022). DOI: 10.1134/S0015462822050081
- S.A. Isaev, A.I. Leontiev, E.E. Son, S.V. Guvernyuk, M.A. Zubin, N.I. Mikheev, I.A. Popov, D.V. Nikuschenko, A.G. Sudakov, J. Phys.: Conf. Ser., 2088, 012018 (2021). DOI: 10.1088/1742-6596/2088/1/012018
- M.A. Zubin, A.F. Zubkov, Fluid Dyn., 57 (1), 77 (2022). DOI: 10.1134/S0015462822010128
- V.I. Terekhov, V.V. Terekhov, I.A. Chokhar, N. Yan Lun, Teplofizika i aeromekhanika, 29 (6), 935 (2022). (In Russian)
- F.R. Menter, in 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conf. (Orlando, USA, 1993), paper AIAA-93-2906. DOI: 10.2514/6.1993-2906
- Y. Saad, Iterative methods for sparse linear systems, 2nd ed. (Society for Industrial and Applied Mathematics, Philadelphia, 2003)
- D. Demidov, AMGCL: C++ library for solving large sparse linear systems with algebraic multigrid method [Electronic source]. URL: http://amgcl.readthedocs.org/
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.