Спектры ЭПР и частичная ориентация формильных радикалов, стабилизированных в поликристаллах CO и Ar при гелиевых температурах
Дмитриев Ю.А.1
1Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
Email: dmitriev.mares@mail.ioffe.ru
Поступила в редакцию: 15 июня 2023 г.
В окончательной редакции: 5 августа 2023 г.
Принята к печати: 21 октября 2023 г.
Выставление онлайн: 16 декабря 2023 г.
Получены и исследованы спектры ЭПР формильных радикалов DCO и HCO, стабилизированных при гелиевых температурах в матрицах CO и Ar соответственно, осаждением из газовой фазы. Моделированием спектров установлено, что имеет место частичная ориентация захваченных радикалов в поликристаллическом образце. В твердом монооксиде углерода валентная связь C=O формильного радикала имеет выделенное направление, параллельное поверхности осаждения образца и перпендикулярное плоскости газовых потоков. В твердом аргоне таким выделенным направлением является нормаль к поверхности осаждения. Получены оценки степеней этой впервые наблюдавшейся для стабилизированных формильных радикалов частичной ориентации - около 4% в CO и около 17% в Ar. Ключевые слова: электронный парамагнитный резонанс, матричная изоляция, криоосадки, формильный радикал, порошковый спектр, частичное ориентационное выстраивание.
- J. Zeng, L. Cao, M. Xu, T. Zhu, J.Z.H. Zhang. Nat. Commun., 11 (11), 5713 (2020). DOI: 10.1038/s41467-020-19497-z
- M. A. Hanif, F. Nadeem, I.A. Bhatti, H.M. Tauqeer. Environmental chemistry: a comprehensive approach (John Willey \& Sons, 2020)
- T. Butscher, F. Duvernay, G. Danger, R. Torro, G. Lucas, Y. Carissan, D. Hagebaum-Reignier, T. Chiavassa. Mon. Not. R. Astron. Soc., 486 (2), 1953 (2019). DOI: 10.1093/mnras/stz879
- N.J. Labbe, R. Sivaramakrishnan, C.F. Goldsmith, Y. Georgievski. J. Phys. Chem. Lett., 7 (1), 85 (2106). DOI: 10.1021/acs.jpclett.5b02418
- F.J. Adrian, E.L. Cochran, V.A. Bowers, J. Chem. Phys., 36 (6), 1661 (1962). DOI: 10.1063/1.1732794
- Yu.A. Dmitriev, A. Laaksonen, N.P. Benetis. AIP Advances, 10, 125309 (2020). DOI: 10.1063/5.0027835
- S.V. Ryazantsev, D.A. Tyurin, V.I. Feldman, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 187, 39 (2017). DOI: 10.1016/j.saa.2017.06.018
- Ю.А. Дмитриев. Опт. и спектр., 130 (12), 1803 (2022). DOI: 10.21883/OS.2022.12.54084.3712-22
- Yu.A. Dmitriev, I.A. Zelenetckii, N.P. Benetis. Physica B: Condensed Matter, 537, 51 (2018). DOI: 10.106/j.physb.2018.01.045
- N.V. Krainyukova, B. Kuchta. J. Low Temp. Phys., 187 (1-2), 148 (2017). DOI: 10.1007/s10909-016-1717-3
- T. Kiljunen, E. Popov, H. Kunttu, J. Eloranta. J. Phys. Chem. A, 114 (14), 4770 (2010). DOI: 10.1063/1.2715589
- N.P. Benetis, Yu.A. Dmitriev, F. Mocci, A. Laaksonen. J. Phys. Chem. A, 119 (35), 9385 (2015). DOI: 10.1021/acs.jpca.5b05648
- G. Buscarino, A. Alessi, S. Agnello, B. Boizot, F.M. Gelardi, R. Boscaino. Phys. Chem. Chem. Phys., 16 (26), 13360 (2014). DOI: 10.1039/C4CP01499E
- Y.A. Dmitriev, G. Buscarino, N.P. Benetis. J. Phys. Chem. A, 120 (31), 6155 (2016). DOI: 10.1021/acsjpca.6b04119
- Р.Е. Асфин, М.В. Бутурлимова, Т.Д. Коломийцова, И.К. Тохадзе, К.Г. Тохадзе, Д.Н. Щепкин. Опт. и спектр., 128 (10), 1478 (2020). DOI: 10.21883/OS.2021.09.51337.2140-21
- Yu.A. Dmitriev, N.P. Benetis. J. Phys. Chem. A, 122 (49), 9483 (2018). DOI: 10.1021/acs.jpca.8b09478
- Ю.А. Дмитриев. Опт. и спектр., 129 (9), 1129 (2021). DOI: 10.21883/OS.2021.09.51337.2140-21
- E.G. Boguslavsky, A.M. Danilenko, V.A. Nadolinny. Chemistry for Sustainable Development, 8, 21 (2000)
- Образование и стабилизация свободных радикалов, под ред. А. Басса и Г. Бройда (Изд. Иностранной литературы, М., 1962), гл. 9
- S.S. Dalal, D.M. Walters, I. Lyubimov, J.J. de Pablo, M.D. Ediger. PNAS, 112 (14), 4227 (2015). DOI: 10.1073/pnas.1421042112
- N.F. Yudanov, E.G. Boguslavsky, I.I. Yakovlev, S.P. Gabuda. Izv. AN SSSR. Ser. Khim., 2, 272 (1988)
- A.Kh. Vorobiev, T.S. Yankova, N.A. Chumakova. Chem. Phys., 409, 61 (2012). DOI: 10.1016/j.chemphys.2012.10.006
- R.A. Zhitnikov, Y.A. Dmitriev. Astron. Astrophys., 386 (3), 1129 (2002). DOI: 10.1051/0004-6361:20020268
- C.A. McDowell, H. Nakajima, P. Raghunathan. Canad. J. Chem., 48, 805 (1970). DOI: 10.1139/v70-130
- M. Beckendorf, U.J. Katter, T. Risse, H. Schlienz, H.-J. Freund. J. Phys. Chem., 100 (22), 9242 (1996). DOI: 10.1021/jp9522627
- J.C. Tait. Electron paramagnetic resonance studies of matrix isolated inorganic radicals, A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of philosophy (Department of Chemistry, The University of British Columbia, Vancouver, March 1974). DOI: 10.14288/1.0061090
- L.B. Knight, B.W. Gregory, S.T. Cobranchi, F.W. Williams, X.Z. Qin. J. Am. Chem. Soc., 110 (2), 327 (1988). DOI: 10.1021/ja0021a001
- L.B. Knight, Jr., W.C. Easley, W.W. Weltner, Jr. J. Chem. Phys., 54 (4), 1610 (1971). DOI: 10.1063/1.1675061
- F.J. Adrian, J. Bohandy, B.F. Kim. J. Chem. Phys., 44 (9), 3805 (1984). DOI: 10.1063/1.448182
- D. Bhattacharya, H.-Y. Wang, J.E. Willard. J. Phys. Chem., 85 (10), 1310 (1981). DOI: 10.1021/j150610a009
- S.V. Ryazantsev, D.A. Tyurin, V.I. Feldman. Spectrochim. Acta, Part A, 187, 39 (2017). DOI: 10.1016/j.saa.2017.06.018
- L.J. van Ijzendoorn, L.J. Allamandola, F. Baas, J.M. Greenberg. J. Chem. Phys., 78 (12), 7019 (1983). DOI: 10.1063/1.444745
- P.V. Zasimov, E.V. Sanochkina, D.A. Tyurin, V.I. Feldman. Phys. Chem. Chem. Phys., 25 (6), 4624 (2023). DOI: 10.1039/D2CPo5356J
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.