Quantum efficiency of photocatalytic water splitting by fractal nanostructures Ag-AgI
Bezrukov P. A. 1, Nashchekin A. V. 2, Sidorov A. I.3
1ITMO University, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
3St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
Email: pawqa1@yandex.ru, nashchekin@mail.ioffe.ru, sidorov@oi.ifmo.ru

PDF
Quantum efficiency of photocatalytic water splitting by fractal nanostructures was studied. It was shown that the layers of nanostructures, synthesis be chemical reaction of substitution and subsequent partial iodizing, consist of fractal dendrites. It has been established that quantum efficiency of water splitting depends on the thickness of silver layer of nanostructure in non-linear form and increases with the increase of semiconductor layer AgI. Keywords: photocatalysis, water splitting, silver iodide, quantum efficiency.
  1. Y. Wang, A. Vogel, M. Sachs, R.S. Sprick, L. Wilbraham, S.J.A. Moniz, R. Godin, M.A. Zwijnenburg, J.R. Durrant, A.I. Cooper, J. Tang, Nat. Energy, 4, 746 (2019). DOI: 10.1038/s41560-019-0456-5
  2. Z. Liu, W. Hou, P. Pavaskar, M. Aykol, S.B. Cronin, Nano Lett., 11, 1111 (2011). DOI: 10.1021/nl104005n
  3. S. Kan, B. Chen, G. Chen, Appl. Energy, 250, 1235 (2019). DOI: 10.1016/J.APENERGY.2019.05.104
  4. K. Maeda, J. Photochem. Photobiol. C, 12, 237 (2011). DOI: 10.1016/j.jphotochemrev.2011.07.001
  5. N. Serpone, E. Pelizzetti, Photocatalysis: fundamentals and applications (Wiley, N.Y., 1989)
  6. M. Rafique, R. Mubashar, M. Irshad, S.S.A. Gillani, M.B. Tahir, N.R. Khalid, A. Yasmin, M.A. Shehzad, J. Inorg. Organomet. Polym. Mater., 30, 3837 (2020). DOI: 10.1007/s10904-020-01611-9
  7. A. Kubacka, I. Barba-Nieto, U. Caudillo-Flores, M. Fernandez-Garci a, Current Opin. Chem. Eng., 33, 100712 (2021). DOI: 10.1016/j.coche.2021.100712
  8. Y. Nosaka, A.Y. Nosaka, Chem. Rev., 117, 11302 (2017). DOI: 10.1021/acs.chemrev.7b00161
  9. H. Saito, Y. Nosaka, J. Phys. Chem. C, 118, 15656 (2014). DOI: 10.1021/jp502440f
  10. P. Edalati, Y. Itagoe, H. Ishihara, T. Ishihara, H. Emami, M. Arita, M. Fuji, K. Edalati, J. Photochem. Photobiol. A, 443, 114167 (2022). DOI: 10.1016/j.jphotochem.2022.114167
  11. X. Xu, X. Yang, Y. Tao, W. Zhu, X. Ding, J. Zhu, H. Chen, Int. J. Mol. Sci., 23, 15221 (2022). DOI: 10.3390/ijms232315221
  12. Y. Li, S.C.E. Tsang, Mater. Today Sustain., 9, 100032 (2020). DOI: 10.1016/j.mtsust.2020.100032
  13. W. Choi, J.Y. Choi, H. Song, APL Mater., 7, 100702 (2019). DOI: 10.1063/1.5099666
  14. M. Buscema, J.O. Island, D.J. Groenendijk, S.I. Blanter, G.A. Steele, H.S. van der Zant, A. Castellanos-Gomez, Chem. Soc. Rev., 44, 3691 (2015). DOI: 10.1039/c5cs00106d
  15. X.-J. Wen, C.-H. Shen, Z.-H. Fei, D. Fang, Z.-T. Liu, J.-T. Dai, C.-G. Niu, Chem. Eng. J., 383, 123083 (2020). DOI: 10.1016/j.cej.2019.123083
  16. H. Yu, L. Liu, X. Wang, P. Wang, J. Yub, Y. Wang, Dalton Transact., 41, 10405 (2012). DOI: 10.1039/C2DT30864A
  17. H. Cheng, B. Huang, Y. Dai, X. Qin, X. Zhang, Langmuir, 26, 6618 (2010). DOI: 10.1021/la903943s
  18. A.I. Sidorov, P.A. Bezrukov, A.V. Nashchekin, N.V. Nikonorov, Tech. Phys., 67 (9), 1186 (2022). DOI: 10.21883/TP.2022.09.54682.91-22
  19. Y. Jiao, M. Chen, Y. Ren, H. Ma, Opt. Mater. Express, 7, 1557 (2017). DOI: 10.1364/OME.7.001557
  20. A.I. Sidorov, A.V. Nashchekin, R.A. Castro, I.N. Anfimova, T.V. Antropova, Physica B, 603, 412764 (2021). DOI: 10.1016/j.physb.2020.412764

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru