Quantum efficiency of photocatalytic water splitting by fractal nanostructures Ag-AgI
Bezrukov P. A. 1, Nashchekin A. V. 2, Sidorov A. I.3
1ITMO University, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
3St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
Email: pawqa1@yandex.ru, nashchekin@mail.ioffe.ru, sidorov@oi.ifmo.ru
Quantum efficiency of photocatalytic water splitting by fractal nanostructures was studied. It was shown that the layers of nanostructures, synthesis be chemical reaction of substitution and subsequent partial iodizing, consist of fractal dendrites. It has been established that quantum efficiency of water splitting depends on the thickness of silver layer of nanostructure in non-linear form and increases with the increase of semiconductor layer AgI. Keywords: photocatalysis, water splitting, silver iodide, quantum efficiency.
- Y. Wang, A. Vogel, M. Sachs, R.S. Sprick, L. Wilbraham, S.J.A. Moniz, R. Godin, M.A. Zwijnenburg, J.R. Durrant, A.I. Cooper, J. Tang, Nat. Energy, 4, 746 (2019). DOI: 10.1038/s41560-019-0456-5
- Z. Liu, W. Hou, P. Pavaskar, M. Aykol, S.B. Cronin, Nano Lett., 11, 1111 (2011). DOI: 10.1021/nl104005n
- S. Kan, B. Chen, G. Chen, Appl. Energy, 250, 1235 (2019). DOI: 10.1016/J.APENERGY.2019.05.104
- K. Maeda, J. Photochem. Photobiol. C, 12, 237 (2011). DOI: 10.1016/j.jphotochemrev.2011.07.001
- N. Serpone, E. Pelizzetti, Photocatalysis: fundamentals and applications (Wiley, N.Y., 1989)
- M. Rafique, R. Mubashar, M. Irshad, S.S.A. Gillani, M.B. Tahir, N.R. Khalid, A. Yasmin, M.A. Shehzad, J. Inorg. Organomet. Polym. Mater., 30, 3837 (2020). DOI: 10.1007/s10904-020-01611-9
- A. Kubacka, I. Barba-Nieto, U. Caudillo-Flores, M. Fernandez-Garci a, Current Opin. Chem. Eng., 33, 100712 (2021). DOI: 10.1016/j.coche.2021.100712
- Y. Nosaka, A.Y. Nosaka, Chem. Rev., 117, 11302 (2017). DOI: 10.1021/acs.chemrev.7b00161
- H. Saito, Y. Nosaka, J. Phys. Chem. C, 118, 15656 (2014). DOI: 10.1021/jp502440f
- P. Edalati, Y. Itagoe, H. Ishihara, T. Ishihara, H. Emami, M. Arita, M. Fuji, K. Edalati, J. Photochem. Photobiol. A, 443, 114167 (2022). DOI: 10.1016/j.jphotochem.2022.114167
- X. Xu, X. Yang, Y. Tao, W. Zhu, X. Ding, J. Zhu, H. Chen, Int. J. Mol. Sci., 23, 15221 (2022). DOI: 10.3390/ijms232315221
- Y. Li, S.C.E. Tsang, Mater. Today Sustain., 9, 100032 (2020). DOI: 10.1016/j.mtsust.2020.100032
- W. Choi, J.Y. Choi, H. Song, APL Mater., 7, 100702 (2019). DOI: 10.1063/1.5099666
- M. Buscema, J.O. Island, D.J. Groenendijk, S.I. Blanter, G.A. Steele, H.S. van der Zant, A. Castellanos-Gomez, Chem. Soc. Rev., 44, 3691 (2015). DOI: 10.1039/c5cs00106d
- X.-J. Wen, C.-H. Shen, Z.-H. Fei, D. Fang, Z.-T. Liu, J.-T. Dai, C.-G. Niu, Chem. Eng. J., 383, 123083 (2020). DOI: 10.1016/j.cej.2019.123083
- H. Yu, L. Liu, X. Wang, P. Wang, J. Yub, Y. Wang, Dalton Transact., 41, 10405 (2012). DOI: 10.1039/C2DT30864A
- H. Cheng, B. Huang, Y. Dai, X. Qin, X. Zhang, Langmuir, 26, 6618 (2010). DOI: 10.1021/la903943s
- A.I. Sidorov, P.A. Bezrukov, A.V. Nashchekin, N.V. Nikonorov, Tech. Phys., 67 (9), 1186 (2022). DOI: 10.21883/TP.2022.09.54682.91-22
- Y. Jiao, M. Chen, Y. Ren, H. Ma, Opt. Mater. Express, 7, 1557 (2017). DOI: 10.1364/OME.7.001557
- A.I. Sidorov, A.V. Nashchekin, R.A. Castro, I.N. Anfimova, T.V. Antropova, Physica B, 603, 412764 (2021). DOI: 10.1016/j.physb.2020.412764
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.