Multilevel memristor structures based on a-Si with enhanced resistive switching stability and low compliance currents
Ichyotckin D. V.1,2, Shiryaev M. E.1, Novikov D. V.1, Lebedev E. A.1, Rylkov V. V.
2,3
1 National Research University of Electronic Technology, Moscow, Russia
2National Research Center “Kurchatov Institute”, Moscow, Russia
3Fryazino Branch, Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino, Moscow oblast, Russia
Email: ichetkin.d@haclever.org, maksimshiraev@mail.ru, tororo@bk.ru, dr.beefheart@gmail.com, vvrylkov@mail.ru
Using the magnetron deposition and thermal sputtering techniques, we synthesized the Cr/Cu-Ag/a-Si/natural oxide SiOx/p++-Si structures with enhanced resistive switching stability (more than 104 write/erase cycles), which is several orders of magnitude higher than previously reported. At the same time, the structures demonstrate the multilevel character of switching at compliance currents of up to 1 μA and have the retention time of resistive states of at least 10 min. A possible mechanism for the formation of stable resistive switching is discussed. Keywords: memristors, a-Si, magnetron deposition, multilevel resistive switching, low compliance currents.
- D. Ielmini, Microelectron. Eng., 190, 44 (2018). DOI: 10.1016/j.mee.2018.01.009
- Q. Xia, J.J. Yang, Nat. Mater., 18, 309 (2019). DOI: 10.1038/s41563-019-0291-x
- F. Zahoor, T.Z.A. Zulkifli, F.A. Khanday, Nanoscale Res. Lett., 15, 90 (2020). DOI: 10.1186/s11671-020-03299-9
- A.V. Emelyanov, K.E. Nikiruy, A.V. Serenko, A.V. Sitnikov, M.Yu. Presnyakov, R.B. Rybka, A.G. Sboev, V.V. Rylkov, P.K. Kashkarov, M.V. Kovalchuk, V.A. Demin, Nanotechnology, 31, 045201 (2020). DOI: 10.1088/1361-6528/ab4a6d
- W. Huang, X. Xia, C. Zhu, P. Steichen, W. Quan, W. Mao, J. Yang, L. Chu, X. Li, Nano-Micro Lett., 13, 85 (2021). DOI: 10.1007/s40820-021-00618-2
- V.A. Demin, D.V. Nekhaev, I.A. Surazhevsky, K.E. Nikiruy, A.V. Emelyanov, S.N. Nikolaev, V.V. Rylkov, M.V. Kovalchuk, Neural Networks, 134, 64 (2021). DOI: 10.1016/j.neunet.2020.11.005
- M. Lanza, A. Sebastian, W.D. Lu, M.L. Gallo, M.-F. Chang, D. Akinwande, F.M. Puglisi, H.N. Alshareef, M. Liu, J.B. Roldan, Science, 376, 1066 (2022). DOI: 10.1126/science.abj9979
- A.N. Matsukatova, A.I. Ilyasov, K.E. Nikiruy, E.V. Kukueva, A.L. Vasiliev, B.V. Goncharov, A.V. Sitnikov, M.L. Zanaveskin, A.S. Bugaev, V.A. Demin, V.V. Rylkov, A.V. Emelyanov, Nanomaterials, 12, 3455 (2022). DOI: 10.3390/nano12193455
- Metal oxides for non-volatile memories: materials, technology and applications, ed. by I. Valov, P. Dimitrakis, S. Tappertzhofen (Elsevier, 2022), ch. 4-7
- H. Yeon, P. Lin, Ch. Choi, S.H. Tan, Y. Park, D. Lee, J. Lee, F. Xu, B. Gao, H. Wu, H. Qian, Y. Nie, S. Kim, J. Kim, Nat. Nanotechnol., 15, 574 (2020). DOI: 10.1038/s41565-020-0694-5
- Z. Ma, J. Ge, W. Chen, X. Cao, Sh. Diao, Zh. Liu, Sh. Pan, ACS Appl. Mater. Interfaces, 14, 21207 (2022). DOI: 10.1021/acsami.2c03266
- W. Banerjee, Q. Liu, H. Hwang, J. Appl. Phys., 127, 051101 (2020). DOI: 10.1063/1.5136264
- J.D. McBrayer, R.M. Swanson, T.W. Sigmon, J. Electrochem. Soc., 133, 1242 (1986). DOI: 10.1149/1.2108827
- M.M. Jassim, A.O. Hussain, Iraqi J. Appl. Phys., 17, 21 (2021). https://www.iasj.net/iasj/download/7a47cc37d5518401
- M.N. Martyshov, A.V. Emelyanov, V.A. Demin, K.E. Nikiruy, A.A. Minnekhanov, S.N. Nikolaev, A.N. Taldenkov, A.V. Ovcharov, M.Yu. Presnyakov, A.V. Sitnikov, A.L. Vasiliev, P.A. Forsh, A.B. Granovskiy, P.K. Kashkarov, M.V. Kovalchuk, V.V. Rylkov, Phys. Rev. Appl., 14, 034016 (2020). DOI: 10.1103/PhysRevApplied.14.034016
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.