Copper-doped carbon nanoparticles as a two-modal nanoprobe for luminescent and magnetic resonance imaging
Stepanidenko E. A.1, Vedernikova A. A.1, Ondar S. O.1,2, Badrieva Z. F.3, Brui E. A.3, Miruschenko M. D.1, Volina O. V.4, Koroleva A. V.4, Zhizhin E. V.4, Ushakova E. V.1
1International research and educational center for physics of nanostructures, ITMO University, Saint-Petersburg, Russia
2Saint-Petersburg State Institute of Technology (Technical University), St. Petersburg, Russia
3Faculty of Physics, ITMO University, Saint Petersburg, Russia
4Research Park, Saint Petersburg State University, Saint Petersburg, Russia
Email: eastepanidenko@itmo.ru, aavedernikova@itmo.ru, badrievaz@gmail.com, ekaterina.brui@itmo.ru, ofussr@itmo.ru, o.volina@spbu.ru, st054051@spbu.ru, evgeniy.zhizhin@spbu.ru, elena.ushakova@itmo.ru
In this work, copper-doped carbon nanoparticles with emission in a wide spectral range and the ability to change the relaxation times of water protons during magnetic resonance imaging were fabricated. A high relaxivity value r1=0.92 mM-1·s-1 was achieved, which is the highest value of r1 for copper nanoparticles, to our knowledge. The suggested carbon nanoparticles are promising two-modal nanoprobes for bioimaging. Keywords: carbon nanoparticles, long-wavelength photoluminescence, magnetic resonance imaging, contrast agents.
- A.P. Litvin, X. Zhang, E.V. Ushakova, A.L. Rogach. Adv Funct Mater, 31 (18), 2010768 (2021). DOI: 10.1002/adfm.202010768
- E.A. Stepanidenko, E.V. Ushakova, A.V. Fedorov, A.L. Rogach. Nanomaterials, 11 (2), 364 (2021). DOI: 10.3390/nano11020364
- P.P. Falara, A. Zourou, K.V. Kordatos. Carbon NY, 195, 219 (2022). DOI: 10.1016/j.carbon.2022.04.029
- T. Rasheed. TrAC Trends in Analytical Chemistry, 158, 116841 (2023). DOI: 10.1016/j.trac.2022.116841
- Z. Wang, L. Zhang, K. Zhang, Y. Lu, J. Chen, S. Wang, B. Hu, X. Wang. Chemosphere, (2022). DOI: 10.1016/j.chemosphere.2021.132313
- X. Xu, Z. Chen, Q. Li, D. Meng, H. Jiang, Y. Zhou, S. Feng, Y. Yang. Microchemical J., 160 (2021). DOI: 10.1016/j.microc.2020.105708
- K. Jiang, Y. Wang, C. Cai, H. Lin. Advanced Materials, 30 (26), 1800783 (2018)
- Z. Tian, D. Li, E.V. Ushakova, V.G. Maslov, D. Zhou, P. Jing, D. Shen, S. Qu, A.L. Rogach. Advanced Science, 5 (9), 1800795 (2018). DOI: 10.1002/advs.201800795
- Y. Ding, X. Wang, M. Tang, H. Qiu. Advanced Science, 9 (3) (2022). DOI: 10.1002/advs.202103833
- W. Su, H. Wu, H. Xu, Y. Zhang, Y. Li, X. Li, L. Fan. Mater. Chem. Front., 4 (3), 821 (2020). DOI: 10.1039/c9qm00658c
- S. Khan, A. Dunphy, M.S. Anike, S. Belperain, K. Patel, N.H.L. Chiu, Z. Jia. International J. Molecular Sciences, 22 (13), 6786 (2021). DOI: 10.3390/IJMS22136786
- D. Li, E.V. Ushakova, A.L. Rogach, S. Qu. Small, 17 (43), 2102325 (2021). DOI: 10.1002/SMLL.202102325
- H. Ding, X.X. Zhou, J.S. Wei, X.B. Li, B.T. Qin, X.B. Chen, H.M. Xiong. Carbon NY, (2020). DOI: 10.1016/j.carbon.2020.06.024
- E.A. Stepanidenko, I.D. Skurlov, P.D. Khavlyuk, D.A. Onishchuk, A.V. Koroleva, E.V. Zhizhin, I.A. Arefina, D.A. Kurdyukov, D.A. Eurov, V.G. Golubev, A.V. Baranov, A.V. Fedorov, E.V. Ushakova, A.L. Rogach. Nanomaterials, 12(3) (2022). DOI: 10.3390/nano12030543
- H. Zhang, G. Wang, Z. Zhang, J.H. Lei, T.M. Liu, G. Xing, C.X. Deng, Z. Tang, S. Qu. Light: Science \& Applications, 11 (1), 1 (2022). DOI: 10.1038/s41377-022-00798-5
- M. Zheng, Y. Li, S. Liu, W. Wang, Z. Xie, X. Jing. ACS Appl Mater Interfaces, 8 (36), 23533 (2016). DOI: 10.1021/acsami.6b07453
- Y.D. Xiao, R. Paudel, J. Liu, C. Ma, Z.S. Zhang, S.K. Zhou. Int J. Mol. Med., 38 (5), 1319 (2016). DOI: 10.3892/IJMM.2016.2744/HTML
- Hazardous Substances Data Bank (HSDB: 7547 - PubChem. Available at: https://pubchem.ncbi.nlm.nih.gov/source/ hsdb/7547. Accessed April 6, 2023
- D. Zhuang, H. Zhang, G. Hu, B. Guo. J. Nanobiotechnology, 20 (1), 1 (2022). DOI: 10.1186/S12951-022-01479-6
- O. Perlman, I.S. Weitz, H. Azhari. Phys. Med. Biol., 60 (15), 5767 (2015). DOI: 10.1088/0031-9155/60/15/5767
- O. Perlman, A. Borodetsky, Y. Kauffmann, Y. Shamay, H. Azhari, I.S. Weitz. ACS Appl. Nano Mater., 2 (10) (2019). DOI: 10.1021/acsanm.9b00791
- Y. Chen, P. Liu, P. Sun, J. Jiang, Y. Zhu, T. Dong, Y. Cui, Y. Tian, T. An, J. Zhang, Z. Li, X. Yang. Theranostics, 9 (5), 1453 (2019). DOI: 10.7150/THNO.29987
- C. Song, Z. Ouyang, Y. Gao, H. Guo, S. Wang, D. Wang, J. Xia, M. Shen, X. Shi. Nano Today, 41 (2021). DOI: 10.1016/j.nantod.2021.101325
- H. Chen, Y. Qiu, D. Ding, H. Lin, W. Sun, G.D. Wang, W. Huang, W. Zhang, D. Lee, G. Liu, J. Xie, X. Chen. Advanced Materials, 30 (36) (2018). DOI: 10.1002/adma.201802748
- S. Zheng, N. Yu, C. Han, T. Xie, B. Dou, Y. Kong, F. Zuo, M. Shi, K. Xu. Biochem. Biophys. Res. Commun., 511 (2), 207 (2019). DOI: 10.1016/j.bbrc.2019.01.098
- Y. Huang, L. Li, D. Zhang, L. Gan, P. Zhao, Y. Zhang, Q. Zhang, M. Hua, C. Jia. Magn. Reson. Imaging, 68, 113 (2020). DOI: 10.1016/j.mri.2020.02.003
- L. Cardo, L. Marti nez-Parra, M. Cesco, B.M. Echeverri a-Beistegui, M. Marti nez-Moro, N. Herrero-Alvarez, M. Cabrerizo, S. Carregal-Romero, P. Ramos-Cabrer, J. Ruiz-Cabello, M. Prato. Small, 2206442 (2023). DOI: 10.1002/smll.202206442
- G.K. Das, N.J.J. Johnson, J. Cramen, B. Blasiak, P. Latta, B. Tomanek, F.C.J.M. van Veggel. J. Phys. Chem. Lett., 3 (4), 524 (2012). DOI: 10.1021/jz201664h
- T. Samanta, C. Hazra, V. Mahalingam. New J. Chemistry, 39 (1), 106 (2015). DOI: 10.1039/C4NJ01647E
- F. Wu, L. Yue, L. Yang, K. Wang, G. Liu, X. Luo, X. Zhu. Colloids Surf. B: Biointerfaces, 175 (2019). DOI: 10.1016/j.colsurfb.2018.11.054
- Z. Ji, P. Ai, C. Shao, T. Wang, C. Yan, L. Ye, W. Gu. ACS Biomater. Sci. Eng., 4 (6), 2089 (2018). DOI: 10.1021/acsbiomaterials.7b01008
- Q. Jia, J. Ge, W. Liu, X. Zheng, S. Chen, Y. Wen, H. Zhang, P. Wang. Advanced Materials, 30 (13) (2018). DOI: 10.1002/adma.201706090
- M. Zhang, T. Zheng, B. Sheng, F. Wu, Q. Zhang, W. Wang, J. Shen, N. Zhou, Y. Sun. Chemical Engineering J., 373 (2019). DOI: 10.1016/j.cej.2019.05.107
- S. Sun, L. Zhao, D. Wu, H. Zhang, H. Lian, X. Zhao, A. Wu, L. Zeng. ACS Appl. Bio. Mater., 4 (2), 1969 (2021). DOI: 10.1021/acsabm.0c01597
- P.P. Zhu, Z. Cheng, L.L. Du, Q. Chen, K.J. Tan. Langmuir, 34 (34), 9982 (2018). DOI: 10.1021/acs.langmuir.8b01230
- Y. Liu, P. Wu, X. Wu, C. Ma, S. Luo, M. Xu, W. Li, S. Liu. Talanta, 210 (2020). DOI: 10.1016/j.talanta.2019.120649
- M. Najaflu, M. Shahgolzari, F. Bani, A.Y. Khosroushahi. ACS Omega, 7 (38), (2022). DOI: 10.1021/acsomega.2c04484
- J. Du, Y. Zhao, J. Chen, P. Zhang, L. Gao, M. Wang, C. Cao, W. Wen, C. Zhu. RSC Adv, 7 (54) (2017). DOI: 10.1039/c7ra05383e
- B. Zhang, B. Wang, E.V. Ushakova, B. He, G. Xing, Z. Tang, A.L. Rogach, S. Qu. Small, 2204158 (2022). DOI: 10.1002/smll.202204158
- S. Caspani, R. Magalhaes, J.P. Araujo, C.T. Sousa. Materials, 13 (11), 2586 (2020). DOI: 10.3390/ma13112586
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.