Optical anisotropy of polyvinyl alcohol films with metal nanorods under uniaxial tension
Kafeeva D. A.
1, Gladskikh I.A.
1, Dadadzhanov D.R.
1, Afanasjeva A.V.
1, Sapunova A. A.
1, Maslova N. A.
2, Vartanyan T. A.
11ITMO University, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
Email: daler.dadadzhanov@gmail.com, Tigran.Vartanyan@mail.ru
The possibility of obtaining macroscale anisotropic thin films from polyvinyl alcohol with included metal nanorods under uniaxial tension conditions that do not lead to a change in the morphology of metal nanoparticles is shown. Silver and gold nanorods were obtained by directed growth from nuclei and then embedded in a polymer matrix based on polyvinyl alcohol. Initially isotropic films with absorption independent of the polarization of the probing light became anisotropic after stretching, which manifested itself in the dependence of the extinction spectra on the polarization of the probing radiation. The weakening of the longitudinal dipole plasmon resonance mode with the simultaneous enhancement of the transverse dipole plasmon resonance when the light polarization is rotated from 0o to 90o degree indicates the orientation of the nanorods in the film along the direction of its stretching. In addition to the change in absorption in the bands of dipole modes, a strong orientational dependence of absorption in the band of the quadrupole mode of the plasmon resonance of metal nanorods was found. Keywords: plasmon resonance, metal nanorods, anisotropy, polyvinyl alcohol.
- J. Cao, T. Sun, K.T. Grattan. Sensors and Actuators B: Chemical, 195, 332-351 (2014). DOI: 10.1016/j.snb.2014.01.056
- J. Wang, H.Z. Zhang, R.S. Li, C.Z. Huang. TrAC Trends in Analytical Chemistry, 80, 429-443 (2016). DOI: 10.1016/j.trac.2016.03.015
- I. Uechi, S. Yamada. Analyt. and Bioanalyt. Chem., 391, 2411-2421 (2008). DOI: 10.1007/s00216-008-2121-x
- H. Liao, C.L. Nehl, J.H. Hafner. Nanomedicine (London), 1 (2), 201-8 (2006). DOI: 10.2217/17435889.1.2.201
- I.A. Gladskikh, D.R. Dadadzhanov, R.A. Zakoldayev, T.A. Vartanyan. Opt. Spectrosc., 130 (9), 1153-1157 (2022). DOI: 10.21883/EOS.2022.09.54837.3649-22
- J. Zheng, X. Cheng, H. Zhang, X. Bai, R. Ai, L. Shao, J. Wang. Chem. Rev., 121 (21), 13342-13453 (2021). DOI: 10.1021/acs.chemrev.1c00422
- H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, F. Vallee. Physical review letters, 107 (5), 057402 (2011). DOI: 10.1103/PhysRevLett.107.057402
- S. Biswas, D. Nepal, K. Park, R.A. Vaia. J. Phys. Chem. Lett., 3 (18), 2568-2574 (2012). DOI: 10.1021/jz3009908
- S.W. Prescott, P. Mulvaney. J. Appl. Phys., 99 (12), 123504 (2006). DOI: 10.1063/1.2203212
- J. Perez-Juste, I. Pastoriza-Santos, L.M. Liz-Marzan, P. Mulvaney. Coordination Chemistry Reviews, 249 (17-18), 1870-1901 (2005). DOI: 10.1016/j.ccr.2005.01.030
- Z. Wu, Y. Liang, L. Cao, Q. Guo, S. Jiang, F. Mao, J. Sheng, Q. Xiao. Nanoscale, 11 (47), 22890-22898 (2019). DOI: 10.1039/C9NR07949A
- H.H. Chang, C.J. Murphy. Chemistry of Materials, 30 (4), 1427-1435 (2018). DOI: 10.1021/acs.chemmater.7b05310
- M.R. Shcherbakov, P.P. Vabishchevich, M.I. Dobynde, T.V. Dolgova, A.S. Sigov, C.M. Wang, A.A.E. Fedyanin. JETP Lett., 90 (6), 433 (2009). DOI: 10.1134/S0021364009180064
- M. Ren, E. Plum, J. Xu, N.I. Zheludev. Nature Commun., 3 (1), 1 (2012). DOI: 10.1038/ncomms1805
- O. Wilson, G.J. Wilson, P. Mulvaney. Advanced Materials, 14 (13-14), 1000-1004 (2002). DOI: 10.1002/1521-4095%2820020705%2914%3A13/14 <1000%3A%3AAID-ADMA1000>3.0.CO%3B2-E
- J. Perez-Juste, B. Rodri guez-Gonzalez, P. Mulvaney, L.M. Liz-Marzan. Advanced Functional Materials, 15 (7), 1065-1071 (2005). DOI: 10.1002/adfm.200400591
- H. Nur, S.M. Nasir. Malaysian Journal of Fundamental and Applied Sciences, 4 (1) (2008). DOI: 10.11113/mjfas.v4n1.33
- L. Dai, X. Lu, L. Song, Y. Huang, B. Liu, L. Zhang, J. Zhang, S. Wu, T. Chen. Advanced Materials Interfaces, 5 (11), 1800026 (2018). DOI: 10.1002/admi.201800026
- S. Stoenescu, M. Packirisamy, V.V. Truong. International J. Theoretical and Applied Nanotechnology, 1 (2), 26-29 (2013). DOI: 10.11159/ijtan.2013.003
- P.R. Yadav, M.H. Rizvi, B. Kuttich, S.R. Mishra, B.S. Chapman, B.B. Lynch, T. Kraus, A.L. Oldenburg, J.B. Tracy. ACS Applied Nano Materials, 4 (4), 3911-3921 (2021). DOI: 10.1021/acsanm.1c00309
- S. Stoenescu, V.V. Truong, M. Packirisamy. Plasmonics, 9, 299-307 (2014). DOI: 10.1007/s11468-013-9623-x
- N.B. Leonov, I.A. Gladskikh, V.A. Polishchuk, T.A. Vartanyan. Opt. Spectrosc., 119, 450-455 (2015). DOI: 10.1134/S0030400X15090179
- M.R. Hormozi-Nezhad, M. Jalali-Heravi, H. Robatjazi, H. Ebrahimi-Najafabadi. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 393, 46-52 (2012). DOI: 10.1016/j.colsurfa.2011.10.023
- B.M. van der Zande, L. Pages, R.A. Hikmet, A. van Blaaderen. J. Physical Chemistry B, 103 (28), 5761-5767 (1999). DOI: 10.1021/jp9847383
- A.V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G.A. Wurtz, R. Atkinson, R. Pollard, V.A. Podolskiy, A.V. Zayats. Nature Materials, 8 (11), 867-871 (2009). DOI: 10.1038/NMAT2546
- I.O. Sosa, C. Noguez, R.G. Barrera. J. Phys. Chem. B, 107 (26), 6269-6275 (2003). DOI: 10.1021/jp0274076
- E.R. Encina, E.A. Coronado. J. Phys. Chem. C, 111 (45), 16796-16801 (2007). DOI: 10.1021/jp075880j
- D.L. Fedlheim, C.A. Foss. Metal Nanoparticles Synthesis, Characterization, and Applications, 1st Edition (CRC Press, Boca Raton, 2001). DOI: 10.1201/9780367800475
- K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz. J. Phys. Chem. B, 107 (3), 668 (2003). DOI: 10.1021/jp026731y
- V. Amendola, R. Pilot, M. Frasconi, O.M. Marago, M.A. Iati. J. Phys.: Cond. Mat., 29 (20), 203002 (2017). DOI: 10.1088/1361-648X/aa60f3
- B.N. Khlebtsov, N.G. Khlebtsov. J. Phys. Chem. C, 111 (31), 11516-11527 (2007). DOI: 10.1021/jp072707e
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.