Formation of silver nanoparticles oligomers obtained via laser ablation in a liquid by sequential centrifugation and ultrasonication: tunable long-wavelength shift of plasmon resonance for biomedical applications
Dadadzhanov D.R.
1, Palekhova A.V.
1, Alexan G.
1, Baranov M.A.
1, Maslova N.A.
21International research and educational center for physics of nanostructures, ITMO University, Saint-Petersburg, Russia
2Research Park, Saint Petersburg State University, Saint Petersburg, Russia
Email: daler.dadadzhanov@gmail.com
A relatively simple physical method has been proposed for fabrication of stable oligomers of silver nanoparticles, preliminarily obtained by pulsed laser ablation of a metal target in a liquid. Oligomers of silver nanoparticles are formed in an aqueous solution after prolonged centrifugation at 18000 g and subsequent ultrasonication of the initial colloidal solution of spherical nanoparticles obtained by laser ablation. The plasmon resonance in oligomers is shifted relative to the plasmon resonance in spherical nanoparticles to the long wavelength region by 140 nm. Keywords: plasmon resonance, silver nanoparticles, laser ablation, extinction.
- V. Chandrakala, V. Aruna, G. Angajala. Emergent Materials, 5 (6), 1593-1615 (2022). DOI: 10.1007/S42247-021-00335-X
- M. Kim, J.H. Lee, J.M. Nam. Advanced Science, 6 (17), 1900471 (2019). DOI: 10.1002/ADVS.201900471
- T. Liu, Y. Song, Z. Huang, X. Pu, Y. Wang, G. Yin, L. Gou, J. Weng, X. Meng. Colloids Surf B Biointerfaces, 207, 112023 (2021). DOI: 10.1016/J.COLSURFB.2021.112023
- Y. Gao, Y. Zhou, R. Chandrawati. ACS Appl Nano Mater., 3 (1), 1-21 (2020). DOI: 10.1021/ACSANM.9B02003
- H. Yang, W. Xu, Y. Zhou. Microchimica Acta, 186 (12), 1-22 (2019). DOI: 10.1007/S00604-019-3904-9
- H. Malekzad, P. Sahandi Zangabad, H. Mirshekari, M. Karimi, M.R. Hamblin. Nanotechnol Rev., 6 (3), 301-329 (2017). DOI: 10.1515/NTREV-2016-0014
- D.R. Dadadzhanov, I.A. Gladskikh, M.A. Baranov, T.A. Vartanyan, A. Karabchevsky. Sens. Actuators B Chem., 333, 129453 (2021). DOI: 10.1016/J.SNB.2021.129453
- G.A. Sotiriou. Wiley Interdiscip Rev Nanomed Nanobiotechnol., 5 (1), 19-30 (2013). DOI: 10.1002/WNAN.1190
- K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz. J. Phys. Chem. B., 107 (3), 668-677 (2003). DOI: 10.1021/JP026731Y
- L. Ding, C. Yao, X. Yin, C. Li, Y. Huang, M. Wu, B. Wang, X. Guo, Y. Wang, M. Wu. Small, 14 (42), 1801451 (2018). DOI: 10.1002/SMLL.201801451
- K. Kettler, K. Veltman, D. van de Meent, A. van Wezel, A.J. Hendriks. Environ. Toxicol. Chem., 33 (3), 481-492 (2014). DOI: 10.1002/ETC.2470
- P. Gurnani, C. Sanchez-Cano, H. Xandri-Monje, J. Zhang, S.H. Ellacott, E.D.H. Mansfield, M. Hartlieb, R. Dallmann, S. Perrier, Small, 18 (38), 2203070 (2022). DOI: 10.1002/SMLL.202203070
- N.N. Zhang, H.R. Sun, S. Liu, Y.C. Xing, J. Lu, F. Peng, C.L. Han, Z. Wei, B. Yang, K. Liu. CCS Chemistry, 4 (2), 660-670 (2022). DOI: 10.31635/ccschem.021.202000637
- A. Takami, H. Kurita, S. Koda. J. Phys. Chem. B, 103 (8), 1226-1232 (1999). DOI: 10.1021/JP983503O
- V. Amendola, M. Meneghetti. Physical Chemistry Chemical Physics, 15 (9), 3027-3046 (2013). DOI: 10.1039/C2CP42895D
- F. Mafun., J.Y. Kohno, Y. Takeda, T. Kondow, H. Sawabe. J. Phys. Chem. B, 104 (39), 9111-9117 (2000). DOI: 10.1021/JP001336Y
- V. Amendola, S. Polizzi, M. Meneghetti. Langmuir, 23 (12), 6766-6770 (2007). DOI: 10.1021/LA0637061
- S.M. Arakelyan, V.P. Veiko, S.V. Kutrovskaya, A.O. Kucherik, A.V. Osipov, T.A. Vartanyan, T.E. Itina. J. Nanoparticle Research, 18 (6), 1-12 (2016). DOI: 10.1007/S11051-016-3468-0
- R. Zamiri, A. Zakaria, H.A. Ahangar, M. Darroudi, G. Zamiri, Z. Rizwan, G.P.C. Drummen. Int J Nanomedicine, 8 (1), 233-244 (2013). DOI: 10.2147/IJN.S36036
- A. Hahn, S. Barcikowski, B.N. Chichkov. Journal of Laser Micro Nanoengineering, 3 (2), 73-77 (2009). DOI: 10.2961/JLMN.2008.02.0003
- V. Piotto, L. Litti, M. Meneghetti. Journal of Physical Chemistry C, 124 (8), 4820-4826 (2020). DOI: 10.1021/ACS.JPCC.9B10793
- J. Theerthagiri, K. Karuppasamy, S.J. Lee, R. Shwetharani, H.S. Kim, S.K.K. Pasha, M. Ashokkumar, M.Y. Choi. Light: Science \& Applications, 11 (250), 1-47 (2022). DOI: 10.1038/s41377-022-00904-7
- M. Ratti, J.J. Naddeo, J.C. Griepenburg, S.M. O'Malley, D.M. Bubb, E.A. Klein. J. Vis. Exp., (124), 55416 (2017). DOI: 10.3791/55416
- D. Di az, A. Molina, D. Hahn. Spectrochim Acta Part B At Spectrosc., 145, 86-95 (2018). DOI: 10.1016/J.SAB.2018.04.007
- T. Mohamed, M.H. El-Motlak, S. Mamdouh, M. Ashour, H. Ahmed, H. Qayyum, A. Mahmoud. Materials, 15 (20), 7348 (2022). DOI: 10.3390/MA15207348
- V. Scardaci, M. Condorelli, M. Barcellona, L. Salemi, M. Pulvirenti, M.E. Fragala, G. Applied Sciences, 11 (19), 8949 (2021). DOI: 10.3390/APP11198949/S1
- F.Y. Alzoubi, J.Y. Al-zou'by, S.K. Theban, M.K. Alqadi, H.M. Al-khateeb, E.S. AlSharo, Nanotechnology for Environmental Engineering, 6 (3), 1-7 (2021). DOI: 10.1007/S41204-021-00165-6
- T. Tsuji, M. Tsuji, S. Hashimoto. J. Photochem. Photobiol. A Chem., 221 (2), 224-231 (2011). DOI: 10.1016/J.JPHOTOCHEM.2011.02.020
- V. Amendola, M. Meneghetti. Physical Chemistry Chemical Physics, 11 (2), 3805-3821 (2009). DOI: 10.1039/B900654K
- G. Wang, C. Yan, S. Gao, Y. Liu. Materials Science and Engineering: C, 103, 109856 (2019). DOI: 10.1016/J.MSEC.2019.109856
- K. Bolanos, M.J. Kogan, E. Araya. Int. J. Nanomedicine, 14, 6387-6406 (2019). DOI: 10.2147/IJN.S210992
- J.P. Sylvestre, S. Poulin, A.V. Kabashin, E. Sacher, M. Meunier, J.H.T. Luong. Journal of Physical Chemistry B, 108 (43), 16864.-6869 (2004). DOI: 10.1021/JP047134
- K.K. Kim, H.J. Kwon, S.K. Shin, J.K. Song, S.M. Park. Chem Phys Lett., 588, 167-173 (2013). DOI: 10.1016/J.CPLETT.2013.10.011
- E. Fazio, B. Gokce, A. De Giacomo, M. Meneghetti, G. Compagnini, M. Tommasini, F. Waag, A. Lucotti, C.G. Zanchi, P.M. Ossi, M. Dell'aglio, L. D'urso, M. Condorelli, V. Scardaci, F. Biscaglia, L. Litti, M. Gobbo, G. Gallo, M. Santoro, S. Trusso, F. Neri. Nanomaterials, 10 (11), 2317 (2020). DOI: 10.3390/NANO10112317
- M.I. Zhilnikova, E.V. Barmina, G.A. Shafeev, S.M. Pridvorova, O.V. Uvarov. Gold Bull., 53 (3), 129-134. DOI: 10.1007/S13404-020-00281-2
- M.I. Zhil'nikova, E.V. Barmina, G.A. Shafeev. Physics of Wave Phenomena, 26 (2), 85-92 (2018). DOI: 10.3103/S1541308X18020024
- A.V. Simakin, I.V. Baimler, V.V. Smirnova, O.V. Uvarov, V.A. Kozlov, S.V. Gudkov. Physics of Wave Phenomena, 29 (2), 102-107 (2021). DOI: 10.3103/S1541308X21020126
- H. Marrapu, R. Avasarala, V.R. Soma, S.K. Balivada, G.K. Podagatlapalli. RSC Adv., 10 (67), 41217-41228 (2020). DOI: 10.1039/D0RA05942K
- H. Qayyum, W. Ahmed, S. Hussain, G.A. Khan, Z.U. Rehman, S. Ullah, T.U. Rahman, A.H. Dogar. Opt Laser Technol., 129, 106313 (2020). DOI: 10.1016/J.OPTLASTEC.2020.106313
- A. Heuer-Jungemann, N. Feliu, I. Bakaimi, M. Hamaly, A. Alkilany, I. Chakraborty, A. Masood, M.F. Casula, A. Kostopoulou, E. Oh, K. Susumu, M.H. Stewart, I.L. Medintz, E. Stratakis, W.J. Parak, A.G. Kanaras. Chem Rev., 119 (8), 4819-4880 (2019). DOI: 10.1021/ACS.CHEMREV.8B00733
- Z.C. Xu, C.M. Shen, C.W. Xiao, T.Z. Yang, H.R. Zhang, J.Q. Li, H.L. Li, H.J. Gao. Nanotechnology, 18 (11), 115608 (2007). DOI: 10.1088/0957-4484/18/11/115608
- D. Rioux, M. Meunier. J. Phys. Chem. C, 119 (23), 13160-13168 (2015). DOI: 10.1021/ACS.JPCC.5B02728
- F. Dong, E. Valsami-Jones, J.U. Kreft. J. Nanoparticle Research, 18 (9), 1-12 (2016). DOI: 10.1007/S11051-016-3565-0
- M.C. Sportelli, M. Clemente, M. Izzi, A. Volpe, A. Ancona, R.A. Picca, G. Palazzo, N. Cioffi. Colloids Surf. A Physicochem. Eng. Asp., 559, 148-158 (2018). DOI: 10.1016/J.COLSURFA.2018.09.046
- A. Rao, H. Colfen. Comprehensive Supramolecular Chemistry II, (Elsevier, Walthm, MA, USA, 2017), p. 129-156. DOI: 10.1016/B978-0-12-409547-2.12638-1
- B. Khodashenas, H.R. Ghorbani. Arabian J. Chemistry, 12 (9), 1823-1838 (2019). DOI: 10.1016/J.ARABJC.2014.12.014
- W. Li, P.H.C. Camargo, X. Lu, Y. Xia. Nano Lett., 9 (1), 485-490 (2009). DOI: 10.1021/NL803621X
- H.A. Alluhaybi, S.K. Ghoshal, W.N.W. Shamsuri, B.O. Alsobhi, A.A. Salim, G. Krishnan. Nano-Structures \& Nano-Objects, 19, 100355 (2019). DOI: 10.1016/J.NANOSO.2019.100355
- A.R. Ziefub, S. Reichenberger, C. Rehbock, I. Chakraborty, M. Gharib, W.J. Parak, S. Barcikowski. J. Phys. Chem. C, 122 (38), 22125-22136 (2018). DOI: 10.1021/ACS.JPCC.8B04374
- M.A. Valverde-Alva, T. Garci a-Fernandez, E. Esparza-Alegri a, M. Villagran-Muniz, C. Sanchez-Ake, R. Castaneda-Guzman, M.B. De La Mora, C.E. Marquez-Herrera, J.L. Sanchez Llamazares. Laser Phys. Lett., 13 (10), 106002 (2016). DOI: 10.1088/1612-2011/13/10/106002
- A. Menendez-Manjon, B.N. Chichkov, S. Barcikowski. J. Phys. Chem. C, 114 (6), 2499-2504 (2010). DOI: 10.1021/JP909897V
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.