Dolgusheva E. B.
11Udmurt Federal Research Center, Ural Branch Russian Academy of Sciences, Izhevsk, Russia
Email: elena@udman.ru
Within the framework of the molecular dynamics method with multiparticle interatomic interaction potentials, studies of the thermodynamic properties of ordered intermetallides Ti3Al, Zr3Al with a structure of type L12 have been carried out. The results of calculations of the vibrational spectra and thermal properties of intermetallides are compared with the data obtained from the first principles based on the density functional theory. The results of calculations by both methods show that the spectra of compounds are similar in morphology and have intervals of forbidden frequency values. The temperature dependences of the lattice thermal conductivity coefficients Ti3Al and Zr3Al are obtained using the method of nonequilibrium molecular dynamics. On the thermal conductivity graph in a system with zirconium, "plateaus" are observed in the temperature range 200 K <T<300 K, where the values of thermal conductivity practically do not change. Keywords: molecular dynamics method, vibrational densities of states, lattice heat capacity, lattice thermal conductivity.
- M. Maldovan. Phys. Rev. Lett. 110, 025902 (2013)
- G. Wehmeyer, T. Yabuki, C. Monachon, J. Wu, C. Dames. Appl. Phys. Rev. 4, 041304 (2017)
- T. Vasileiadis, J. Varghese, V. Babacic, J. Gomis-Bresco, D.N. Urrios, B. Graczykowski. J. Appl. Phys. 129, 160901 (2021)
- P. Bhalla, P. Kumar, N. Das, N. Singh. Phys. Rev. B 94, 11, 115114 (2016)
- S. Cao, S. Xiao, Y. Chen, L. Xu, X. Wang, J. Han, Yi Jia. Mater. Des. 121, 61 (2017)
- J. Chakraborty, K. Kumar, R. Ranjan, S. Ghosh Chowdhury, S.R. Singh. Acta Mater. 59, 7, 2615 (2011)
- X.Z. Ji, F. Jona, P.M. Marcus. Phys. Rev. B 68, 075421 (2003)
- G.E. Hill, J. Marklund, J. Martinson, B.J. Hopkins. Surface Sci. 24, 2, 435 (1971)
- E.B. Dolgusheva, V.Yu. Trubitsin. Comp. Mater. Sci. 111, 231 (2016)
- E.B. Dolgusheva. Comp. Mater. Sci. 155, 55 (2018)
- E.B. Dolgusheva, V.Yu. Trubitsin. FTT 60, 5, 835 (2018). (in Russian)
- E.I. Salamatov, E.B. Dolgusheva. KhFM 23, 4, 486 (2021). (in Russian)
- E.B. Dolgusheva. KhFM 24, 3, 370 (2022). (in Russian)
- S.M. Foiles, M.I. Baskes, M.S. Daw. Phys. Rev. B 33, 7983 (1986)
- H. Sheng. 8.68.6 https://sites.google.com/site/eampotentials/Home/ZrAl
- R.R. Zope, Y. Mishin. Phys. Rev. B 68, 024102 (2003)
- J.S.C. Jang, Y.W. Chen, L.J. Chang, H.Z. Cheng, C.C. Huang, C.Y. Tsau. Mater. Chem. Phys. 89, 122 (2005)
- R. Tewari, G.K. Dey, S. Banerjee, N. Prabhu. Met. Mater. Trans. A 37, 49 (2006)
- W.J. Meng, J.J. Faber, P.R. Okamoto, L.E. Rehn, B.J. Kestel, R.L. Hitterman. J. App. Phys. 67, 1312 (1990)
- N. Arikan, M. Ersen, H.Y. Ocak, A. Iyigor, A. Candan, S. Ugur, G. Ugur, R. Khenata, D. Varshney. Mod. Phys. Lett. B 27, 30, 1350224 (2013)
- N. Arikan. J. Phys. Chem. Solids 74, 794 (2013)
- H.L. Kagdada, H.J. Trivedi, S.B. Pillai, N.N. Som, P.K. Jha. AMR 1141, 204 (2016)
- S. Plimpton. J. Comput. Phys. 117, 1 (1995). http://lammps.sandia.gov
- P. Wirnsberger, D. Frenkel, C. Dellago. J. Chem. Phys. 143, 124104 (2015)
- D.J. Evans, W.G. Hoover. Annu. Rev. Fluid Mech. 18, 243 (1986)
- F. Muller-Plathe. J. Chem. Phys. 106, 14, 6082 (1997)
- R.G. Ross, P. Andersson, G. Backstrom. Nature 290, 322 (1981)
- A.I. Krivchikov, B.Ya. Gorodilov, O.A. Korolyuk, V.G. Manzhelii, O.O. Romantsova, H. Conrad, W. Press, J.S. Tse, D.D. Klug. Phys. Rev. B 73, 064203 (2006)
- A.I. Krivchikov, A.N. Yushchenko, O.A. Korolyuk, F.J. Bermejo, R. Fernandez-Perea, I. Bustinduy, M.A. Gonzalez. Phys. Rev. B 77, 024202 (2008)
- E. Salamatov. Chin. Phys. B 27, 7, 076502 (2018)
- J.S. Kim, D. Seol, J. Ji, H.S. Jang, Y. Kim, B.J. Lee. Calphad 59, 131 (2017).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.