Experimental study of mass transfer from the surface of a spherical water droplet assisted by spark discharge plasma channel
Shorstkii I. A.
11Kuban State Technological University, Krasnodar, Russia
Email: i-shorstky@mail.ru
The results of an experimental study of the water (vapor) molecules transfer from the surface of a spherical droplet towards the anode when a spark discharge plasma channel flows at atmospheric pressure air are presented. Distilled water and sodium chloride aqueous solution were used in the experiments. Using a high-speed amplitude amplifier with a monitor output, the discharge current and voltage waveforms were obtained for four experiments: a spark discharge, a spark discharge with a drop of distilled water, a spark discharge with a drop of sodium chloride aqueous solution and a spark discharge with a multi-pointed anode structure and a drop of distilled water. Microstructural and energy dispersion analysis data were obtained to confirm the mechanism of substance transfer and the location of water molecules in the electric current closure zone of the spark discharge plasma channel on an aluminum substrate of a flat anode. Keywords: spark discharge, plasma channel, mass transfer, water droplet, dissociation of molecules, ion channel, kangaroo effect.
- N. Sharma, G. Diaz, E. Leal-Quiros. Intern. J. Thermal Sci., 68, 119 (2013). DOI: 10.1016/j.ijthermalsci.2013.01.003
- A. Hens, G. Biswas, S. De. J. Chem. Phys., 143 (9), 094702 (2015). DOI: 10.1063/1.4929784
- J. Kornev, N. Yavorovsky, S. Preis, M. Khaskelberg, U. Isaev, B.N. Chen. Ozone: Sci. Engineer., 28 (4), 207 (2006). DOI: 10.1080/01919510600704957
- M. Damak, K.K. Varanasi. Sci. Adv., 4 (6), 5323 (2018). DOI: 10.1126/sciadv.aao5323
- A.A. Fedorets, L.A. Dombrovsky, E. Bormashenko, M. Nosonovsky. Intern. J. Heat Mass Transfer., 113, 712 (2019). DOI: 10.1016/j.ijheatmasstransfer.2018.12.160
- P.M. Ireland, C.A. Thomas, B.T. Lobel, G.B. Webber, S. Fujii, E.J. Wanless. Frontiers Chem., 6, 280 (2018). DOI: 10.3389/fchem.2018.00280
- D.N. Gabyshev, A.A. Fedorets, O. Klemm. Aerosol Sci. Technol., 54 (12), 1556 (2020). DOI: 10.1080/02786826.2020.1804522
- I. Bashkir, T. Defraeye, T. Kudra, A. Martynenko. Food Engineer. Rev., 12 (4), 473 (2020). DOI: 10.1007/s12393-020-09229-w
- I. Shorstkii, E. Koshevoi. Chem. Engineer., 3 (4), 91 (2019). DOI: 10.3390/chemengineering3040091
- B.B. Wang, X.D. Wang, Y.Y. Duan, M. Chen. Intern. J. Heat Mass Transfer., 73, 553 (2014). DOI: 10.1016/j.ijheatmasstransfer.2014.02.034
- V. Vancauwenberghe, P. Di Marco, D. Brutin. Colloids Surfaces A: Physicochem. Engineer. Aspects., 432, 50 (2013). DOI: 10.1016/j.colsurfa.2013.04.067
- Q. Brosseau, P.M. Vlahovska. Phys. Rev. Lett., 119 (3), 034501 (2017). DOI: 10.1103/PhysRevLett.119.034501
- I.A. Shorstkii, N. Yakovlev. Inorgan. Mater.: Appl. Research., 11 (5), 1236 (2020). DOI: 10.1134/S2075113320050317
- I.A. Shorstkii. Tech. Phys., 91 (8), 1 (2022). DOI: 10.21883/JTF.2021.08.51105.4-21
- A.V. Bernackij, V.N. Ochkin, O.N. Afonin. Fizika Plazmy, 41 (9), 767, (2015). (in Russ.)
- V.N. Ochkin. Spectroscopy of Low Temperature Plasma (WILLEY-VCH, Weinheim, 2009)
- Yu.P. Raizer. Fizika gazovogo razryada (Intellekt, M., 2009) (in Russian)
- E.K. Baksht, O.M. Blinova, M.V. Erofeev, V.I. Karelin, V.S. Ripenko, V.F. Tarasenko, M.A. Shulepov, Plasma Physics Reports, 42 (9), 876 (2016)
- I.A. Shorstky, M.D. Sosnin. Patent RF N 2789539. (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.