Micromanipulation system for insect sensilla based on shape memory Ti50Ni25Cu25 alloy
von Gratowski S.V. 1, Zhukovskaya M. I. 2, Lunichkin A.M.2, Shelyakov A.V. 3, Sitnikov N. N. 4, Koledov V.V. 1,5, Borodako K. A. 1,3, Petrenko S.F.5
1Kotelnikov Institute of Radioengineering and Electronics (IRE) of Russian Academy of Sciences, Moscow, Russia
2Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint-Petersburg, Russia
3National Research Nuclear University “MEPhI”, Moscow, Russia
4State Scientific Center of the Russian Federation "Keldysh Research Center", Moscow, Russia
5Sirius University of Science and Technology, Sochi, Russia
Email: svetlana.gratowski@yandex.ru, mzhukovskaya@rambler.ru, bolverkdc@mail.ru, alex-shel@mail.ru, sitnikov_nikolay@mail.ru, victor_koledov@mail.ru, borodako_kir@mail.ru

PDF
Insect pest control requires fundamental knowledge of their physiology and behavioral responses. However, due to the small size of insects, in general, and their sensory organs (sensilla), in particular, the study of the physiology of insect sensory systems has until recently been limited by insufficient accuracy and selectivity of experimental mechanical manipulation. To eliminate this gap in the study of insects, a physical technology is proposed based on a micromechanical device - microtweezers based on a layered structural composite of Ti50Ni25Cu25 alloy with a shape memory effect (SME), combined with a temperature control system and a three-coordinate piezoelectric micropositioner. Microtweezers with SME selectively capture the smallest sensilla of the studied insects, enabling their precise mechanical stimulation with simultaneous recording of physiological responses generated by sensilla using methods of impulse derivation in the nerve centers of the insect. Keywords: shape memory alloys, shape memory effect (SME), microtweezers, insect sensilla, impulse conduction in insect nerve centers.
  1. M. Dijkstra, J.J. Van Baar, R.J. Wiegerink, T.S. Lammerink, J.H. De Boer, G.J. Krijnen. J. Micromech. Microeng., 15 (7), S132 (2005). DOI: 10.1088/0960-1317/15/7/019
  2. S.N. Gorb. Insect-Inspired Technologies: Insects as a Source for Biomimetics. (In: A. Vilcinskas (eds) Insect Biotechnology. Biologically-Inspired Systems, Springer, Dordrecht, 2011). DOI: 10.1007/978-90-481-9641-8_13
  3. H. Altner, H. Sass, I. Altner. Cell Tissue Res., 176 (3), 389 (1977). DOI: 10.1007/BF00221796
  4. D. Klocke, A. Schmitz, H. Soltner, H. Bousack, H. Schmitz. Beilstein J. Nanotechnol., 2 (1), 186 (2011). DOI: 10.3762/bjnano.2.22
  5. T.V. Kuznetsova, I.Yu. Severina. ZhEBF, 45 (4), 425 (2009). (in Russian)
  6. J.C. Tuthill, R.I. Wilson. Curr. Biol., 26 (20), R1022 (2016). DOI: 10.1016/j.cub.2016.06.070
  7. A.A. Polilov. PLoS ONE, 12 (5), e0175566 (2017). DOI: 10.1371/journal.pone.0175566
  8. D. Shaller. Cell Tissue Res., 191 (1), 121 (1978). DOI: 10.1007/BF00223221
  9. A.M. Lunichkin, M.I. Zhukovskaya. ZhEBF, 57 (1), 44 (2020). (in Russian) DOI: 10.31857/S004445292101006X
  10. F. Marion-Poll, T.R. Tobin. J. Neurosci. Methods, 37 (1), 1 (1991). DOI: 10.1016/0165-0270(91)90015-R
  11. M.A. Landolfa, J.P. Miller. J. Comp. Physiol. A, 177 (6), 749 (1995). DOI: 10.1007/BF00187633
  12. A.M. Lunichkin, A.N. Knyazev. ZhEBF, 53 (6), 425 (2017). (in Russian)
  13. K. Joshi, A. Mian, J. Miller. J. Biomech. Eng., 138 (8), 081006 (2016). DOI: 10.1115/1.4033915
  14. C. Magal, O. Dangles, P. Caparroy, J. Casas. J. Theor. Biol., 241 (3), 459 (2006). DOI: 10.1016/j.jtbi.2005.12.009
  15. M. Kanou, T Shimozawa. J. Comp. Physiol. A, 154 (3), 357 (1984). DOI: 10.1007/BF00605235
  16. K.A. Slinker, C. Kondash, B.T. Dickinson, J.W. Baur. Adv. Mater. Technol., 1 (9), 1600176 (2016). DOI: 10.1002/admt.201600176
  17. F. Marion-Poll. Entomol. Exp. Appl., 80 (1), 116 (1996). DOI: 10.1111/j.1570-7458.1996.tb00900.x
  18. S. von Gratowski, V. Koledov, V. Shavrov, S. Petrenko, A. Irzhak, A. Shelyakov, R. Jede. Advanced System for Nanofabrication and Nanomanipulation Based on Shape Memory Alloy (In: Frontiers in Materials Processing, Applications, Research and Technology, Springer, Singapore, 2018)
  19. V. Koledov, V. Shavrov, S. Von Gratowski, S. Petrenko, A. Irzhak, A. Shelyakov. Conference Proceedings International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale, 3M-NANO (Taipei, Taiwan, 2014), 70573474. DOI: 10.1109/3M-NANO.2014.7057347
  20. A. Shelyakov, N. Sitnikov, K. Borodako, V. Koledov, I. Khabibullina, S. von Gratowski. J. Micro-Bio Robot., 16 (1), 43 (2020). DOI: 10.1007/s12213-020-00126-3
  21. A.V. Shelyakov, N.N. Sitnikov, A.P. Menushenkov, R.N. Rizakhanov, A.A. Ashmarin. Bull. Russ. Acad. Sci. Phys., 79 (9) 1134 (2015). DOI: 10.3103/S106287381509018X
  22. A. Kamantsev, A. Mashirov, P. Mazaev, V. Koledov, V. Shavrov, V. Dikan, A. Shelyakov. Microsc. Microanal., 21 (S3), 1999 (2015). DOI: 10.1017/S1431927615010776
  23. G.I. Rozhkova. Nejrofoziologiya tserkal'noj sistemy nasekomykh (Nauka, M., 1993) (in Russian)
  24. R. Heub lein, H. Gras, W. Gnatzy. Functional Coupling of Cercal Filiform Hairs and Campaniform Sensilla in Crickets (In: S.N. Gorb (eds) Functional Surfaces in Biology, Springer, Dordrecht, 2009), DOI: 10.1007/978-1-4020-6697-9_12
  25. P. Schlossmacher, N. Boucharat, H. Rosner, G. Wilde, A.V. Shelyakov. J. De Physique, IV: JP, 112(II), 731 (2003). DOI: 10.1051/jp4:2003986
  26. A. Shelyakov, N. Sitnikov, S. Saakyan, A. Menushenkov, R. Rizakhanov, A. Korneev. Mater. Sci. Forum, 738-739, 352 (2013). DOI: 10.4028/www.scientific.net/MSF.738-739.352

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru