Tsiberkin K. B.
1, Sosunov A. V.
1, Tselikov G. I.
21Perm State University, Perm, Russia
2Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
Email: kbtsiberkin@psu.ru, avsosunov@psu.ru
In the current research, hollow carbon nanocages are synthesized and characterized by electronic microscopy. It shown that the nanocages have 3-5 nm size and consist of few carbon layers with oxygen addition. The experimental and theoretical study of their absorption spectrum is provided. A simple model of electron energy spectrum is supposed. It is used for calculation of optical absorption spectrum. We have found that the theoretical results are in qualitative agreement with the experimental measurements in IR-band. Thus, the analysis of optical properties of nanocages is provided. They can be used as a pretty optical absorber in IR-band in integral photonics devices. Keywords: carbon nanospheres, absorption spectrum, energy spectrum, IR-spectroscopy.
- S. Kumar, G. Saeed, L. Zhu, K.N. Hui, N.H. Kim, J.H. Lee. Chem. Eng. J. 403, 126352 (2021). DOI: 10.1016/j.cej.2020.126352
- H. Wu, R. Tian, F. Huang, B. Wang, S. Wang, S. Li, F. Liu, H. Zhang. Carbon. 196, 552 (2022). DOI: 10.1016/j.carbon.2022.05.029
- A.M. Grumezescu. Fullerens, Graphenes and Nanotubes: a Pharmaceutical Approach (Elsevier, Amsterdam, 2018). DOI: 10.1016/C2016-0-04206-7
- M.F. Lin, K.W.K. Shung. Phys. Rev. B, 50 (23), 17744(R) (1994). DOI: 10.1103/PhysRevB.50.17744
- X. Wan, J. Dong, D.Y. Xing. Phys. Rev. B, 58 (11), 6756 (1998). DOI: 10.1103/PhysRevB.58.6756
- H. Sadeghi, D. Dorranian. J. Theor. Appl. Phys. 10, 7 (2016). DOI: 10.1007/s40094-015-0194-4
- K. Krishnamoorthy, R. Mohan, S.J. Kim. Appl. Phys. Lett. 98 (111), 244101 (2011). DOI: 10.1063/1.3599453
- J. Zhu, S. Yan, N. Feng N., L. Ye, J.-Y. Ou, Q.H. Liu. Appl. Phys. Lett. 112, 153106 (2018). DOI: 10.1063/1.5022768
- H. Kuzmany, R. Winkler, T. Pichler. J. Phys. Cond. Mat. 7 (33), 6601 (1995). DOI: 10.1088/0953-8984/7/33/003
- M. Liu. Nanoarchielectronics, 1, 1 (2020). DOI: 10.37256/nat.112020124.1-12
- T.V. Eryomin, V.A. Eryomina, E.D. Obraztsova, Opt. i spektr., 131 (1), 111 (2023) (in Russian). DOI: 10.21883/OS.2023.01.54547.4365-22
- A.V. Silant'ev. Opt. Spectrosc., 124 (2), 155 (2018). DOI: 10.1134/S0030400X18020157
- A.V. Silant'ev. Phys. Met. Metallogr., 118 (1), 1 (2017). DOI: 10.1134/S0031918X16100112
- G.A. Rudakov, A.V. Sosunov, R.S. Ponomarev, V.K. Khenner, M.S. Reza, G. Sumanasekera. Phys. Solid State 60 (1) 167 (2018). DOI: 10.1134/S1063783418010213
- K.B. Tsiberkin. J. Exp. Theor. Phys., 135 (6), 920 (2022). DOI: 10.1134/S1063776122120123
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.