Influence of surface quantum effects on optical characteristics of a pair of plasmonic nanoparticles
Eremin Yu.A.
1, Lopushenko V.V.
11Lomonosov Moscow State University, Moscow, Russia
Email: eremin@cs.msu.ru, lopushnk@cs.msu.ru
The influence of quantum effects, such as spatial nonlocality and splitting of electron cloud near the surface, on the extinction cross-section and field intensity in the gap between particles was analyzed via the Discrete Source Method using a pair of plasmonic gold nanoparticles. In this case, spatial nonlocality is described within the framework of the Generalized Nonlocal Optical Response Theory, while the splitting of the electron cloud is accounted for by using the theory of mesoscopic boundary conditions with Feibelman parameters. It has been found that mesoscopic boundary conditions lead to restoring of the plasmon resonance amplitude compared to the volume nonlocal effect. Keywords: Discrete Source Method, nonlocal effect, mesoscopic boundary conditions, Feibelman parameters.
- M. Pelton, G. Bryant. Introduction to Metal-Nanoparticle Plasmonics (John Wiley \& Sons, 2013). ISBN: 978-1-118-06040-7
- Modern Plasmonics ( Handbook of Surface Science). Vol. 4, ed. by A.A. Maradudin, J.R. Sambles, W.L. Barnes (Elsevier, Amsterdam, 2014). ISBN 10: 0444595260
- Y. Qiu, C. Kuang, X. Liu, L. Tang. Sensors, 22, 4889 (2022). DOI: 10.3390/s22134889
- H-M. Kim, J-H. Park, S-K. Lee. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 261, 120034 (2021). DOI: 10.1016/j.saa.2021.120034
- M. Zhang, Y. Xu, X. Peng, H. Chen, H. Wang. Chem. Commun., 58, 7932 (2022). DOI: 10.1039/D2CC00801G
- A.I. Lopez-Lorente. Analytica Chimica Acta, 1168, 338474 (2021). DOI: 10.1016/j.aca.2021.338474
- H. Zhou, Q. Yu, H. Wang, W. Zhu, J. Liu, Z. Wang. Talanta, 233, 122515 (2021). DOI: 10.1016/j.talanta.2021.122515
- S. Farooq, D. Rativa, Z. Said, R.E. De Araujo. Applied Thermal Engineering, 218, 119212 (2023). DOI: 10.1016/j.applthermaleng.2022.119212
- H.M. Baghramyan, C. Ciraci. Nanophotonics, 11|,(11), 2473 (2022). DOI: 10.1515/nanoph-2021-0707
- N.A. Mortensen. Nanophotonics, 10 (10), 2563 (2021). DOI: 10.1515/nanoph-2021-0156
- R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F.J. Garci a-Vidal, A.G. Borisov, J. Aizpurua. Faraday Discussions, 178, 151 (2015). DOI: 10.1039/C4FD00196F
- W. Zhu, R. Esteban, A.G. Borisov, J.J. Baumberg, P. Nordlander, H.J. Lezec, J. Aizpurua, K.B. Crozier. Nature Commun., 7, 11495 (2016). DOI: 10.1038/ncomms11495
- C.A. Ullrich. Time-Dependent Density-Functional Theory: Concepts and Applications (OUP Oxford, 2011). ISBN-10: 0199563020
- R. Sinha-Roy, P. Garci a-Gonzalez, H.-C. Weissker, F. Rabilloud, A.I. Fernandez-Domi nguez. ACS Photonics, 4, 1484 (2017). DOI: 10.1021/acsphotonics.7b00254
- C. David, F.J. Garci a de Abajo. J. Phys. Chem. C, 115 (40), 19470 (2011). DOI: 10.1021/jp204261u
- N.A. Mortensen, S. Raza, M. Wubs, T. S ndergaard, S.I. Bozhevolnyi. Nature Communications, 5, 3809 (2014). DOI: 10.1038/ncomms4809
- M. Kupresak, X. Zheng, A.E. Vandenbosch, V.V. Moshchalkov. Appl. Phys. Rev., 3 (1), 1900172 (2020). DOI: 10.1002/adts.201900172
- H.M. Baghramyan, F. Della Sala, C. Ciraci. Phys. Rev. X, 11, 011049 (2021). DOI: 10.1103/PhysRevX.11.011049
- A. Babaze, E. Ogando, P.E. Stamatopoulou, C. Tserkezis, N.A. Mortensen, J. Aizpurua, A.G. Borisov, R. Esteban. Optics Express, 30|,(12), 21159 (2022). DOI: 10.1364/OE.456338
- P.J. Feibelman. Prog. Surf. Sci., 12, 287 (1982). DOI: 10.1016/0079-6816(82)90001-6
- Y. Yang, D. Zhu, W. Yan, A. Agarwal, M. Zheng, J.D. Joannopoulos, P. Lalanne, T. Christensen, K.K. Berggren, M. Soljac. Nature, 576, 248 (2019). DOI: 10.1038/s41586-019-1803-1
- P.E. Stamatopoulou, C. Tserkezis. Optical Materials Express, 12 (5) 1869 (2022). DOI: 10.1364/OME.456407
- N.V. Grishina, Yu.A. Eremin, A.G. Sveshnikov. Opt. Spectrosc., 113 (4), 440 (2012). DOI: 10.1134/S0030400X12100049
- Yu.A. Eremin, V.V. Lopushenko, Opt. and spectrosk., 130 (10), 1596 (2022) (in Russian). DOI: 10.21883/OS.2022.10.53632.3849-22 [Yu.A. Eremin, V.V. Lopushenko. Opt. Spectrosc., 130 (10), 1336 (2022). DOI: 10.21883/EOS.2022.10.54873.3849-22]
- D. Colton, R. Kress. Integral Equation Methods in Scattering Theory (John Wiley \& Son, New York, 1983)
- P.A.D. Goncalves, T. Christensen, N. Rivera, A.-P. Jauho, N.A. Mortensen, M. Soljavcic. Nat. Commun., 11, 366 (2020). DOI: 10.1038/s41467-019-13820-z
- P.B. Johnson, R.W. Christy. Phys. Rev. B, 6, 4370 (1972). DOI: 10.1103/PhysRevB.6.4370
- R.A. Echarri, P.A.D. Gon?alves, C. Tserkezis, F.J. Garci a de Abajo, N.A. Mortensen, J.D. Cox. Optica, 8 (5), 710 (2021). DOI: 10.1364/OPTICA.412122
- Yu.A. Eremin, N.L. Tsitsas, M. Kouroublakis, G. Fikioris. J. Comput. Appl. Mathematics, 417, N114556 (2022). DOI: 10.1016/j.cam.2022.114556
- Q. Zhou, P. Zhang, X.-W. Chen. Phys. Rev. B, 105, 125419 (2022). DOI: 10.1103/PhysRevB.105.125419
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.