Influence of surface quantum effects on optical characteristics of a pair of plasmonic nanoparticles
Eremin Yu.A. 1, Lopushenko V.V. 1
1Lomonosov Moscow State University, Moscow, Russia
Email: eremin@cs.msu.ru, lopushnk@cs.msu.ru

PDF
The influence of quantum effects, such as spatial nonlocality and splitting of electron cloud near the surface, on the extinction cross-section and field intensity in the gap between particles was analyzed via the Discrete Source Method using a pair of plasmonic gold nanoparticles. In this case, spatial nonlocality is described within the framework of the Generalized Nonlocal Optical Response Theory, while the splitting of the electron cloud is accounted for by using the theory of mesoscopic boundary conditions with Feibelman parameters. It has been found that mesoscopic boundary conditions lead to restoring of the plasmon resonance amplitude compared to the volume nonlocal effect. Keywords: Discrete Source Method, nonlocal effect, mesoscopic boundary conditions, Feibelman parameters.
  1. M. Pelton, G. Bryant. Introduction to Metal-Nanoparticle Plasmonics (John Wiley \& Sons, 2013). ISBN: 978-1-118-06040-7
  2. Modern Plasmonics ( Handbook of Surface Science). Vol. 4, ed. by A.A. Maradudin, J.R. Sambles, W.L. Barnes (Elsevier, Amsterdam, 2014). ISBN 10: 0444595260
  3. Y. Qiu, C. Kuang, X. Liu, L. Tang. Sensors, 22, 4889 (2022). DOI: 10.3390/s22134889
  4. H-M. Kim, J-H. Park, S-K. Lee. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 261, 120034 (2021). DOI: 10.1016/j.saa.2021.120034
  5. M. Zhang, Y. Xu, X. Peng, H. Chen, H. Wang. Chem. Commun., 58, 7932 (2022). DOI: 10.1039/D2CC00801G
  6. A.I. Lopez-Lorente. Analytica Chimica Acta, 1168, 338474 (2021). DOI: 10.1016/j.aca.2021.338474
  7. H. Zhou, Q. Yu, H. Wang, W. Zhu, J. Liu, Z. Wang. Talanta, 233, 122515 (2021). DOI: 10.1016/j.talanta.2021.122515
  8. S. Farooq, D. Rativa, Z. Said, R.E. De Araujo. Applied Thermal Engineering, 218, 119212 (2023). DOI: 10.1016/j.applthermaleng.2022.119212
  9. H.M. Baghramyan, C. Ciraci. Nanophotonics, 11|,(11), 2473 (2022). DOI: 10.1515/nanoph-2021-0707
  10. N.A. Mortensen. Nanophotonics, 10 (10), 2563 (2021). DOI: 10.1515/nanoph-2021-0156
  11. R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F.J. Garci a-Vidal, A.G. Borisov, J. Aizpurua. Faraday Discussions, 178, 151 (2015). DOI: 10.1039/C4FD00196F
  12. W. Zhu, R. Esteban, A.G. Borisov, J.J. Baumberg, P. Nordlander, H.J. Lezec, J. Aizpurua, K.B. Crozier. Nature Commun., 7, 11495 (2016). DOI: 10.1038/ncomms11495
  13. C.A. Ullrich. Time-Dependent Density-Functional Theory: Concepts and Applications (OUP Oxford, 2011). ISBN-10: 0199563020
  14. R. Sinha-Roy, P. Garci a-Gonzalez, H.-C. Weissker, F. Rabilloud, A.I. Fernandez-Domi nguez. ACS Photonics, 4, 1484 (2017). DOI: 10.1021/acsphotonics.7b00254
  15. C. David, F.J. Garci a de Abajo. J. Phys. Chem. C, 115 (40), 19470 (2011). DOI: 10.1021/jp204261u
  16. N.A. Mortensen, S. Raza, M. Wubs, T. S ndergaard, S.I. Bozhevolnyi. Nature Communications, 5, 3809 (2014). DOI: 10.1038/ncomms4809
  17. M. Kupresak, X. Zheng, A.E. Vandenbosch, V.V. Moshchalkov. Appl. Phys. Rev., 3 (1), 1900172 (2020). DOI: 10.1002/adts.201900172
  18. H.M. Baghramyan, F. Della Sala, C. Ciraci. Phys. Rev. X, 11, 011049 (2021). DOI: 10.1103/PhysRevX.11.011049
  19. A. Babaze, E. Ogando, P.E. Stamatopoulou, C. Tserkezis, N.A. Mortensen, J. Aizpurua, A.G. Borisov, R. Esteban. Optics Express, 30|,(12), 21159 (2022). DOI: 10.1364/OE.456338
  20. P.J. Feibelman. Prog. Surf. Sci., 12, 287 (1982). DOI: 10.1016/0079-6816(82)90001-6
  21. Y. Yang, D. Zhu, W. Yan, A. Agarwal, M. Zheng, J.D. Joannopoulos, P. Lalanne, T. Christensen, K.K. Berggren, M. Soljac. Nature, 576, 248 (2019). DOI: 10.1038/s41586-019-1803-1
  22. P.E. Stamatopoulou, C. Tserkezis. Optical Materials Express, 12 (5) 1869 (2022). DOI: 10.1364/OME.456407
  23. N.V. Grishina, Yu.A. Eremin, A.G. Sveshnikov. Opt. Spectrosc., 113 (4), 440 (2012). DOI: 10.1134/S0030400X12100049
  24. Yu.A. Eremin, V.V. Lopushenko, Opt. and spectrosk., 130 (10), 1596 (2022) (in Russian). DOI: 10.21883/OS.2022.10.53632.3849-22 [Yu.A. Eremin, V.V. Lopushenko. Opt. Spectrosc., 130 (10), 1336 (2022). DOI: 10.21883/EOS.2022.10.54873.3849-22]
  25. D. Colton, R. Kress. Integral Equation Methods in Scattering Theory (John Wiley \& Son, New York, 1983)
  26. P.A.D. Goncalves, T. Christensen, N. Rivera, A.-P. Jauho, N.A. Mortensen, M. Soljavcic. Nat. Commun., 11, 366 (2020). DOI: 10.1038/s41467-019-13820-z
  27. P.B. Johnson, R.W. Christy. Phys. Rev. B, 6, 4370 (1972). DOI: 10.1103/PhysRevB.6.4370
  28. R.A. Echarri, P.A.D. Gon?alves, C. Tserkezis, F.J. Garci a de Abajo, N.A. Mortensen, J.D. Cox. Optica, 8 (5), 710 (2021). DOI: 10.1364/OPTICA.412122
  29. Yu.A. Eremin, N.L. Tsitsas, M. Kouroublakis, G. Fikioris. J. Comput. Appl. Mathematics, 417, N114556 (2022). DOI: 10.1016/j.cam.2022.114556
  30. Q. Zhou, P. Zhang, X.-W. Chen. Phys. Rev. B, 105, 125419 (2022). DOI: 10.1103/PhysRevB.105.125419

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru