First-principles studies of the structural, elastic and optical properties of non-centrosymmetric cyclophosphates
Using density functional theory methods using gradient, hybrid, short- and long-range hybrid functionals, including taking into account the dispersion correction, in the basis of localized atomic orbitals of the CRYSTAL package, calculations of the crystal and electronic structure, elastic, piezoelectric, linear and nonlinear optical properties of hexagonal KMg(PO3)3, KCa(PO3)3, RbCd(PO3)3, trigonal KZn(PO3)3, RbZn(PO3)3, tetragonal K2Sr(PO3)4 cyclophosphates. It has been shown that in hexagonal phosphates, fluorine and oxygen atoms form [P3O9] rings, in tetragonal phosphates - [P4O12], in trigonal phosphates - [P3O9] trimers, united through zinc atoms into hexagonal rings around K(Rb) atoms. Band structures and partial densities of electronic states were calculated, and the nature of valence and unoccupied states was determined. Elastic constants and moduli were calculated and conclusions were drawn about the plasticity or fragility of materials, and from the components of the piezotensor about their mechanoelectric properties. The coefficients of second harmonic generation and birefringence were obtained and the use as nonlinear optical materials was assessed. Keywords: density functional theory, double phosphates, cyclophosphates, elastic modulus, IR spectra, piezoelectric coefficients, nonlinear optical properties.
- C. Wu, G. Yang, M.G. Humphrey, C. Zhang. Coordinat. Chem. Rev. 375, 459 (2018). https://doi.org/10.1016/j.ccr.2018.02.017
- Y. Liu, Y. Shen, S. Zhao, J. Luo. Coordinat. Chem. Rev. 407, 213152 (2020). https://doi.org/10.1016/j.ccr.2019.213152
- R.A. Kumar. J. Chem. 2013, 154862 (2013). https://doi.org/10.1155/2013/154862
- D.A. Roberts. IEEE J. Quantum Electron. 28, 10, 2057 (1992). https://ieeexplore.ieee.org/document/159516
- B.I. Kidyarov. Crystals 7, 4, 109 (2017). https://doi.org/10.3390/cryst7040109
- T. Thao Tran, H. Yu, J.M. Rondlinelli, K.R. Poeppelmeier, P.S. Halasyamani. Chem. Mater. 28, 15, 5238 (2016). https://doi.org/10.1021/acs.chemmater.6b02366
- W. Wang, D. Mei, S. Wen, J. Wang, Y. Wu. Chin. Chem. Lett. 33, 5, 2301 (2022). https://doi.org/10.1016/j.cclet.2021.11.089
- I.V. Nikiforov, D.V. Deyneko, I.F. Duskaev. Phys. Solid State 62, 5, 860 (2020)
- M. Mutailipu, K.R. Poeppelmeier, S. Pan. Chem. Rev. 121, 3, 1130 (2021). https://doi.org/10.1021/acs.chemrev.0c00796
- Q. Jing, G. Yang, J. Hou, M. Sun, H. Cao. J. Solid State Chem. 244, 69 (2016). https://doi.org/10.1016/j.jssc.2016.08.036
- X. Liu, P. Gong, Y. Yang, G. Song, Z. Lin. Coordinat. Chem. Rev. 400, 213045 (2019). https://doi.org/10.1016/j.ccr.2019.213045
- Y.-X. Song, L. Min, Y. Ning. Chinese J. Struct. Chem. 39, 12, 2148 (2020). DOI: 10.14102/j.cnki.0254-5861.2011-3028
- J. Dang, D. Mei, Y. Wu, Z. Lin. Coordinat. Chem. Rev. 431, 213692 (2021). https://doi.org/10.1016/j.ccr.2020.213692
- Z. Bai, L. Liu, D. Wang, C.-L. Hu, Z. Lin. Chem. Sci. 12, 11, 4014 (2021). DOI: 10.1039/d1sc00080b
- S.G. Zhao, P.F. Gong, S.Y. Luo, L. Bai, Z.S. Lin, C.M. Ji, T.L. Chen, M.C. Hong, J.H. Luo. J. Am. Chem. Soc. 136, 24, 8560 (2014). https://doi.org/10.1021/ja504319x
- Z. Bai, L. Liu, L. Zhang, Y. Huang, F. Yuan, Z. Lin. Chem. Commun. 55, 58, 8454 (2019). DOI: 10.1039/c9cc04192c
- L. Li, Y. Wang, B.H. Lei, S.J. Han, Z.H. Yang, P.K. Roeppelmeier, S.L. Pan. J. Am. Chem. Soc. 138, 29, 9101 (2016). https://doi.org/10.1021/jacs.6b06053
- L. Li, Y. Wang, B.-H. Lei, S. Han, Z. Yang, H. Li, S. Pan. J. Mater. Chem. C 5, 2, 269 (2017). DOI: 10.1039/c6tc04565k
- M. Wen, H.P. Wu, S.C. Cheng, J. Sun, Z.H. Yang, X.H. Wu, S.L. Pan. Inorg. Chem. Front. 6, 2, 504 (2019)
- N.E. Novikova, N.I. Sorokina, I.A. Verin, O.A. Alekseeva, E.I. Orlova, V.I. Voronkova, M. Tseitlin. Crystals 8, 7, 283 (2018). https://doi.org/10.3390/cryst8070283
- P. Yu, L.-M. Wu, L.-J. Zhou, L. Chen. J. Am. Chem. Soc. 136, 1, 480 (2014)
- M. Abudoureheman, X. Pan, S. Han, Y. Rouzhahong, Z. Yang, H. Wu, S. Pan. Inorg. Chem. 57, 12, 7372 (2018). https://doi.org/10.1021/acs.inorgchem.8b01017
- Z. Xie, X. Su, H. Ding, H. Li. J. Solid State Chem. 262, 313 (2018). https://doi.org/10.1016/j.jssc.2018.03.032
- T. Yu, L. Xiong, X. Liu, Y. Yang, Z. Lin, L. Wu, L. Chen. Cryst. Growth Design 21, 4, 2445 (2021). https://doi.org/10.1021/acs.cgd.1c00051
- M. Sandstrom, D. Bostrom. Acta Crystallographica E 60, Part 2, i15 (2004). DOI: https://doi.org/10.1107/S1600536804000303
- S. Wang, C. Xu, X. Qiao. Opt. Mater. 107, 110102 (2020). https://doi.org/10.1016/j.optmat.2020.110102
- D. Wei, H.J. Seo. J. Lumin. 229, 117644 (2021). https://doi.org/10.1016/j.jlumin.2020.117644
- R. Dovesi, A. Erba, R. Orlando, C.M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rerat, S. Casassa, J. Baima, S. Salustro, B. Kirtman. WIREs Comput. Mol. Sci. 8, 4, e1360 (2018). https://doi.org/10.1002/wcms.1360
- D. Vilela Oliveira, J. Laun, M.F. Peintinger, T. Bredow. J. Comput. Chem. 40, 27, 2364 (2019). https://doi.org/10.1002/jcc.26013
- J. Laun, D. Vilela Oliveira, T. Bredow. J. Comput. Chem. 39, 19, 1285 (2018). https://doi.org/10.1002/jcc.25195
- J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 18, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke. Phys. Rev. Lett. 100, 13, 136406 (2008); Erratum Phys. Rev. Lett. 102, 039902 (2009). https://doi.org/10.1103/PhysRevLett.100.136406
- A.D. Becke. J. Chem. Phys. 98, 7, 5648 (1993). https://doi.org/10.1063/1.464913
- C. Lee, W. Yang, R.G. Parr. Phys. Rev. B 37, 2, 785 (1988). https://doi.org/10.1103/PhysRevB.37.785
- C. Adamo, V. Barone. J. Chem. Phys. 110, 13, 6158 (1999). https://doi.org/10.1063/1.478522
- A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, G.E. Scuseria. J. Chem. Phys. 125, 22, 224106 (2006). https://doi.org/10.1063/1.2404663
- L. Schimka, J. Harl, G. Kresse. J. Chem. Phys. 134, 2, 024116 (2011). https://doi.org/10.1063/1.3524336
- E. Weintraub, T.M. Henderson, G.E. Scuseria. J. Chem. Theory Comput. 5, 4, 754 (2009). https://doi.org/10.1021/ct800530u
- N. Handy, T. Yanai, D. Tew. Chem. Phys. Lett. 393, 1-3, 51 (2004). https://doi.org/10.1016/j.cplett.2004.06.011
- R. Menchon, G. Colizzi, C. Johnston, F. Torresi, J. Lasave, S. Koval, J. Kohanoff, R. Migoni. Phys. Rev. B. 98, 10, 104108 (2018). https://doi.org/10.1103/PhysRevB.98.104108
- D.C. Langreth, M. Dion, H. Rydberg, E. Schroder, P. Hyldgaard, B.I. Lundqvist. Int. J. Quantum Chem. 101, 5, 599 (2005). https://doi.org/10.1002/qua.20315
- S. Grimme, A. Hansen, J.G. Brandenburg, C. Bannwarth. Chem. Rev. 116, 9, 5105 (2016). https://doi.org/10.1002/jcc.21759
- S. Grimme, S. Ehrlich, L. Goerigk. J. Comput. Chem. 32, 7, 1456 (2011). https://doi.org/10.1002/jcc.21759
- M. Ferrero, M. Rerat, R. Orlando, R. Dovesi. J. Chem. Phys. 128, 1, 014110 (2008). https://doi.org/10.1063/1.2817596
- R. Orlando, V. Lacivita, R. Bast, K. Ruud. J. Chem. Phys. 132, 24, 244106 (2010). https://doi.org/10.1063/1.3447387
- M. Ferrero, M. Rerat, B. Kirtman, R. Dovesi. J. Chem. Phys. 129, 24, 244110 (2008). https://doi.org/10.1063/1.3043366
- M. Ferrero, B. Civalleri, M. Rerat, R. Orlando, R. Dovesi. J. Chem. Phys. 131, 21, 214704 (2009). https://doi.org/10.1063/1.3267861
- H.J. Monkhorst, J.D. Pack. Phys. Rev. B 13, 12, 5188 (1976)
- Yu.N. Zhuravlev. Phys. Solid State 64, 11, 1700 (2022)
- J. Sun, H. Wu, M. Mutailipu, Z. Yang, S. Pan. Dalton Trans. 48, 35, 13406 (2019). https://doi.org/10.1039/C9DT02842K
- Yu.N. Zhuravlev, D.V. Korabel'nikov. Bull. Russ. Academ. Sci. 86, 10, 1230 (2022)
- W.F. Perger, J. Criswell, B. Civalleri, R. Dovesi. Comp. Phys. Commun. 180, 10, 1753 (2009). https://doi.org/10.1016/j.cpc.2009.04.022
- A. Erba, A. Mahmoud, R. Orlando, R. Dovesi. Phys. Chem. Minerals 41, 2, 151 (2014). https://doi.org/10.1007/s00269-013-0630-4
- Z. Hu, M. Lan, D. Huang, P. Huang, S. Wang. Crystals 12, 9, 1323 (2022). https://doi.org/10.3390/ cryst12091323
- M. Born, K. Huang. Dynamics Theory of Crystal Lattices. Oxford University Press, Oxford, UK (1954)
- F. Mouhat, F.-X. Coudert. Phys. Rev. B 90, 22, 224104 (2014). https://doi.org/10.1103/PhysRevB.90.224104
- N.A. Abdullaev. Phys. Solid State 48, 4, 663 (2006)
- P. Jund, R. Viennois, X.M. Tao, K. Niedziolka, J.C. Tedenac. Phys. Rev. B 85, 22, 224105 (2012). https://doi.org/10.1103/PhysRevB.85.224105
- W. Voigt. Lehrbuch der Kristallphysik. Teubner, Leipzig (1928). https://doi.org/10.1007/978-3-663-15884-4
- A. Reuss. Z. Angew. Math. Mech. 9, 1, 4958 (1929). https://doi.org/10.1002/zamm.19290090104
- R. Hill. J. Mechan. Phys. Solids 11, 5, 357 (1963). https://doi.org/10.1016/0022-5096(63)90036-X
- Yu.N. Zhuravlev, Izv. AltGU, Fizika 1, 123, 23 (2022) (in Russian). https://doi.org/10.14258/izvasu(2022)1-03
- Y. Zhuravlev, V. Atuchin. Molecules 27, 20, 6840 (2022). https://doi.org/10.3390/molecules27206840
- S.F. Pugh. The London, Edinburgh, and Dublin Philos. Mag. J. Sci. 45, 367, 823 (1954)
- Y. Zhou, B. Liu. J. Eur. Ceram. Soc. 33, 13-14, 2817 (2013). http://dx.doi.org/10.1016/j.jeurceramsoc.2013.04.020
- O.L. Anderson. J. Phys. Chem. Solids 24, 7, 909 (1963). https://doi.org/10.1016/0022-3697(63)90067-2
- R.E. Menchon, F. Torresi, J. Lasave, S. Koval. Condens. Matter Phys. 25, 4, 43709 (2022). https://doi.org/10.48550/arXiv.2301.01538
- D.R. Clarke. Surf. Coat. Technol. 163-164, 67 (2003). https://doi.org/10.1016/S0257-8972(02)00593-5
- A. Erba, Kh.E. El-Kelany, M. Ferrero, I. Baraille, M. Rerat. Phys. Rev. B 88, 3, 035102 (2013). DOI: 10.1103/PhysRevB.88.035102
- P. Krempl, G. Schleinzer, W. Wallnofer. Sensors. Actuators A 61, 1-3, 361 (1997). https://doi.org/10.1016/S0924-4247(97)80289-0
- C.R. Bowen, V.Y. Topolov, A.K. Hyunsun. Modern Piezoelectric Energy-Harvesting Materials (Springer Series in Materials Science, 238). Springer Int. Publishing, Imprit, Springer (2016)
- E.J.L. Gomes, S.G.C. Moreira, A.S. de Menezes, A.O. dos Santos, D.P. Pereira, P.C. de Oliveira, C.M.R. Remedios. J. Synchrotron Rad. 17, Part 6, 810 (2010). https://doi.org/10.1107/S0909049510039956
- G. Clementi, F. Cottone, A. Di Michele, L. Gammaitoni, M. Mattarelli, G. Perna, M. Lopez-Suarez, S. Baglio, C. Trigona, I. Neri. Energies 15, 17, 6227 (2022). https:// doi.org/10.3390/en15176227
- Y. Wang, D. Sun, J. Chen, C. Shen, G. Liu, D. Wang, S. Wang. Optik 251, 168481 (2022). https://doi.org/10.1016/j.ijleo.2021.168481
- P. Santhanaraghavan, P. Ramasamy. Sci. Technol. 2, 53 (2001). DOI: 10.1016/B0-08-043152-6/00010-3
- G.M. Meyer, R.J. Nelmes, C. Vettier. J. Phys. C 13, 21, 4035 (1980). https://iopscience.iop.org/article/10.1088/0022-3719/13/21/009
- K. Manimekalai, P. Jayaprakash, N. Padmamalini, S. Rama. J. Mater. Sci.: Mater. Electron. 34, 171 (2023). https://doi.org/10.1007/s10854-022-09594-8
- P.S. Halasyamani, W. Zhang. Inorg. Chem. 56, 3, 12077 (2017). DOI: 10.1021/acs.inorgchem.7b02184
- H.A.R. Aliabad, M. Fathabadi, I. Ahmad. Int. J. Quantum Chem. 113, 6, 865 (2012). https://doi.org/10.1002/qua.24258
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.