Semipolar wide-band III-N-layers on a silicon substrate: orientation controlling epitaxy and the properties of structures (review)
Bessolov V.N.1, Konenkova E.V.1
1Ioffe Institute, St. Petersburg, Russia
Email: lena@triat.ioffe.ru

PDF
The experimental results of the recent years on the synthesis of semipolar wide-band III-N-layers on a nanostructured silicon substrate are summarized. The idea of synthesis involves the formation of Si(111) side walls on the silicon surface, then the epitaxial nucleation of the layer in the " direction of the crystal, followed by the fusion of blocks in the semipolar direction of the surface. Examples of orientation controlling epitaxy of semipolar AlN(10-11)-, GaN(10-11)-, GaN(11-22)-layers synthesized on nanostructured Si(100), Si(113) substrates by methods of metalorganic vapor phase epitaxy and hydride vapor phase epitaxy are shown. The review presents a summary and the prospects for further developments in the field of optoelectronics based on the platform - "semipolar GaN on Si". Keywords: wide-band semipolar III-N-layers, orientation controlling epitaxy, nanostructured silicon substrate
  1. W.C. Johnson, J.B. Parsons, M.C. Crew. J. Phys. Chem., 36, 2561 (1932)
  2. H.P. Maruska, J.J. Tietjen. Appl. Phys. Lett., 15, 327 (1969)
  3. H.M. Manasevit, F.M. Erdmann, W.I. Simpson. J. Electrochem. Soc., 118, 1864 (1971). DOI: 10.1149/1.2407853
  4. H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda. Appl. Phys. Lett., 48, 353 (1986). DOI: 10.1063/1.96549
  5. S. Nakamura, N. Iwasa, M. Senoh, T. Mukai. Jpn. J. Appl. Phys., 31, 1258 (1992). DOI: 10.1143/JJAP.31.1258
  6. S. Nakamura, M. Senoh, T. Mukai. Jpn. J. Appl. Phys., 32, L8 (1993). DOI: 10.1143/JJAP.32.L8
  7. R.R. Sumathi. ECS J. Solid State Sci. Technol., 10, 035001 (2021). DOI: 10.1149/2162-8777/abe6f5
  8. V.Yu. Davydov, A.A. Klochikhin. Semicond., 38 (8), 861 (2004)
  9. A.E. Romanov, T.J. Baker, S. Nakamura, J.S. Speck. J. Appl. Phys., 100, 023522 (2006). DOI: 10.1063/1.2218385
  10. F. Wu, E.C. Young, I. Koslow, M.T. Hardy, P.S. Hsu, A.E. Romanov, S. Nakamura, S.P. DenBaars, J.S. Speck. Appl. Phys. Lett., 99, 251909 (2011). DOI: 10.1063/1.3671113
  11. T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, I. Akasaki. Jpn. J. Appl. Phys., 36, L382 (1997). DOI: 10.1143/JJAP.36.L382
  12. D. Rosales, B. Gil, T. Bretagnon, B. Guizal, F. Zhang, S. Okur, M. Monavarian, N. Izyumskaya, V. Avrutin, U. Ozgur, H. Morko c, J.H. Leach. J. Appl. Phys., 115, 073510 (2014). DOI: 10.1063/1.4865959
  13. W.G. Scheibenzuber, U.T. Schwarz, R.G. Veprek, B. Witzigmann, A. Hangleiter. Phys. Rev. B, 80, 115320 (2009). DOI: 10.1103/PhysRevB.80.115320
  14. F. Scholz. Semicond. Sci. Technol., 27, 024002 (2012). DOI: 10.1088/0268-1242/27/2/024002
  15. T. Wang. Semicond. Sci. Technol., 31, 093003 (2016). DOI: 10.1088/0268-1242/31/9/093003
  16. M. Monavarian, A. Rashidi, D. Feezell. Phys. Status Solidi A, 216, 1800628 (2019). DOI: 10.1002/pssa.201800628
  17. J.E. Northrup. Appl. Phys. Lett., 95, 133107 (2009). DOI: 10.1063/1.3240401
  18. T. Takeuchi, H. Amano, I. Akasaki. Jpn. J. Appl. Phys., 39, 413 (2000). DOI: 10.1143/JJAP.39.413
  19. S.H. Park. J. Appl. Phys., 91, 9904 (2002). DOI: 10.1063/1.1480465
  20. T. Sasaki, S. Zembutsu. J. Appl. Phys., 61, 2533 (1987). DOI: 10.1063/1.337929
  21. P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K.H. Ploog, Nature, 406, 865 (2000). DOI: 10.1038/35022529
  22. X. Ni, Y. Fu,Y. T. Moon, N. Biyikli, H. Morko c. J. Crystal Growth, 290, 166 (2006). DOI: 10.1016/j.jcrysgro.2006.01.008
  23. Q.S. Paduano, D.W. Weyburne, D.H. Tomich. J. Cryst. Growth, 367, 104 (2013). DOI: 10.1016/j.jcrysgro.2012.12.028
  24. R. Ravash, J. Blaesing, A. Dadgar, A. Krost. Appl. Phys. Lett., 97, 142102 (2010). DOI: 10.1063/1.3492835
  25. F. Ranalli, P.J. Parbrook, J. Bai, K.B. Lee, T. Wang, A.G. Cullis. Phys. Stat. Sol. C, 6, S780 (2009). DOI: 10.1002/pssc.200880948
  26. K. Okamoto, J. Kashiwagi, T. Tanaka, M. Kubota. Appl. Phys. Lett., 94, 071105 (2009). DOI: 10.1063/1.3078818
  27. Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama. Appl. Phys. Express, 2, 082101 (2009). DOI: 10.1143/APEX.2.082101
  28. H. Asamizu, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura. Appl. Phys. Express, 1, 091102 (2008). DOI: 10.1143/APEX.1.091102
  29. Y. Yoshizumi, M. Adachi, Y. Enya, T. Kyono, S. Tokuyama, T. Sumitomo, K. Akita, T. Ikegami, M. Ueno, K. Katayama. Appl. Phys. Express, 2, 092101 (2009). DOI: 10.1143/APEX.2.092101
  30. M. Adachi, Y. Yoshizumi, Y. Enya, T. Kyono, T. Sumitomo, S. Tokuyama, S. Takagi, K. Sumiyoshi, N. Saga, T. Ikegami. Appl. Phys. Express, 3, 121001 (2010). DOI: 10.1143/APEX.3.121001
  31. K.K. Fujito, S. Kubo, I. Fujimura. MRS Bull., 34, 313 (2009). DOI: 10.1557/mrs2009.92
  32. H. Masui, S. Nakamura, S.P. DenBaars, U.K. Mishra. IEEE Trans. Electron Devices, 57, 88 (2010). DOI: 10.1109/TED.2009.2033773
  33. S. Guha, N.A. Bojarczuk. Appl. Phys. Lett., 72, 415 (1998). DOI: 10.1063/1.120775
  34. S. Guha, N.A. Bojarczuk. Appl. Phys. Lett., 73, 1487 (1998). DOI: 10.1063/1.122181
  35. A.T. Schremer, J.A. Smart, Y. Wang, O. Ambacher, N.C. MacDonald, J.R. Shealy. Appl. Phys. Lett., 76, 736 (2000). DOI: 10.1063/1.125878
  36. A. Dadgar. Physica Status Solidi (b), 252, 1063 (2015). DOI: 10.1002/pssb.201451656
  37. A. Krost, A. Dadgar. Mater. Sci. \& Engineer. B, B93, 77 (2009). DOI: 10.1016/S0921-5107(02)00043-0
  38. H. Wang, Z. Lin, W. Wang, G. Li, J. Luo. J. Alloys and Compounds, 718, 28 (2017). DOI: 10.1016/j.jallcom.2017.05.009
  39. H.R. Shanks, P.D. Maycock, P.H. Sidles, G.C. Danielson. Phys. Rev., 130 (5), 1743 (1963). DOI: 10.1103/PhysRev.130.1743
  40. M.K. Sunkara, S. Sharma, R. Miranda, G. Lian, E.C. Dickey. Appl. Phys. Lett., 79, 1546 (2001). DOI: 10.1063/1.1401089
  41. I. Kim, J. Holmi, R. Raju, A. Haapalinna, S. Suihkonen. J. Phys. Commun., 4, 045010 (2020). DOI: 10.1088/2399-6528/ab885c
  42. Y. Zheng, M. Agrawal, N. Dharmarasu, K. Radhakrishnan, S. Patwal. Appl. Surf. Sci., 481, 319 (2019). DOI: 10.1016/j.apsusc.2019.03.046
  43. R.G. Banal, M. Funato, Y. Kawakami. Phys. Status Solidi (c), 6, 599 (2009). DOI: 10.1002/pssc.200880415
  44. K.-L. Lin, E.-Y. Chang, J.-Ch. Huang, W.-Ch. Huang, Y.-L. Hsiao, Ch.H. Chiang, T. Li, D. Tweet, J.-Sh. Maa, Sh.-T. Hsu. Phys. Stat. Sol. (c), 5 (6), 1536 (2008). DOI: 10.1002/pssc.200778454
  45. S.L. Selvaraj, A. Watanabe, A. Wakejima, T. Egawa, IEEE Electron Device Lett., 33, 1375 (2012). DOI: 10.1109/LED.2012.2207367
  46. N. Wu, N. Wu, Zh. Xing, Sh. Li, L. Luo, F. Zeng, G. Li. Semicond. Sci. Technol., 38, 063002 (2023). DOI: 10.1088/1361-6641/acca9d
  47. T. Sasaki, T. Matsuoka. J. Appl. Phys., 77, 192 (1995). DOI: 10.1063/1.359368
  48. A. Dadgar, J. Blasing, A. Diez, A. Alam, M. Heuken, A. Krost. Jpn. J. Appl. Phys., 39, L1183 (2000). DOI: 10.1143/JJAP.39.L1183
  49. J. Zhang, X. Yang, Y. Feng, Y. Li, M. Wang, J. Shen, L. Wei, D. Liu, S. Wu, Z. Cai, F. Xu, X. Wang, W. Ge, B. Shen. Phys. Rev. Materials, 4, 073402 (2020). DOI: 10.1103/PhysRevMaterials.4.073402
  50. Y. Sakai, I. Kawayama, H. Nakanishi, M. Tonouchi. Scientific Reports, 5, 13860 (2015). DOI: 10.1038/srep13860
  51. S. Bidnyk, B.D. Little, Y.H. Cho, J. Krasinski, J.J. Song, W. Yang, S.A. McPherson. Appl. Phys. Lett., 73, 2242 (1998). DOI: 10.1063/1.121689
  52. G.P. Yablonskii, E.V. Lutsenko, V.N. Pavlovskii, V.Z. Zubialevich, A.L. Gurskii, H. Kalisch, A. Szymakowskii, R.A. Jansen, A. Alam, Y. Dikme, B. Schineller, M. Heuken, Phys. Status Solidi A, 192, 54 (2002). DOI: 10.1002/1521-396X(200207)192:1<54::AID-PSSA54>3.0.CO;2-2
  53. B.A. Shuhaimi, H. Kawato, Y. Zhu, T. Egawa. J. Phys. Conf., 152, 012007 (2009). DOI: 10.1088/1742-6596/152/1/012007
  54. X. Lu, C. Liu, H. Jiang, X. Zou, A. Zhang, K.M. Lau. Appl. Phys. Lett., 109, 053504 (2016). DOI: 10.1063/1.4960105
  55. J. Yuan, W. Cai, X. Gao, G. Zhu, D. Bai, H. Zhu, Y. Wang. Appl. Phys. Express, 9, 032202 (2016). DOI: 10.7567/APEX.9.032202
  56. W. Cai, X. Gao, W. Yuan, Y. Yang, J. Yuan, H. Zhu, Y. Wang. Appl. Phys. Express, 9, 052204 (2016)
  57. Y. Wang, G. Zhu, W. Cai, X. Gao, Y. Yang, J. Yuan, Z. Shi, H. Zhu. Appl. Phys. Lett., 108, 162102 (2016). DOI: 10.1063/1.4947280
  58. D. Bai, T. Wu, X. Li, X. Gao, Y. Xu, Z. Cao, H. Zhu, Y. Wang. Appl. Phys. B, 122, 9 (2016). DOI: 10.1007/s00340-015-6293-8
  59. D. Bai, X. Gao, W. Cai, W. Yuan, Z. Shi, X. Li, Y. Xu, J. Yuan, G. Zhu, Y. Yang, C. Yang, X. Cao, H. Zhu, Y. Wang. Appl. Phys. A, 122, 535 (2016). DOI: 10.1007/s00339-016-0075-y
  60. W. Cai, Y. Yang, X. Gao, J. Yuan, W. Yuan, H. Zhu, Y. Wang. Opt. Express, 24, 6004 (2016). DOI: 10.1364/OE.24.006004
  61. Y. Jiang, Z. Shi, S. Zhang, J. Yuan, Z. Hu, X. Shen, B. Zhu, Y. Wang. IEEE Electron Dev. Lett., 38, 1684 (2017). DOI: 10.1109/LED.2017.2760318
  62. T. Narita, H. Iguchi, K. Horibuchi, N. Otake, S. Hoshi, K. Tomita. Jpn. J. Appl.Phys., 55, 05FB01 (2016). DOI: 10.7567/JJAP.55.05FB01
  63. Y. Dai, S. Li, H. Gao, W. Wang, Q. Sun, Q. Peng, C. Gui, Z. Qian, S. Liu. J. Mater Sci: Mater. Electron., 27, 2004 (2016). DOI: 10.1007/s10854-015-3984-1
  64. E. Valcheva, J. Birch, P.O.A. Persson, S. Tungasmita, L. Hultman. J. Appl. Phys., 100 (12), 123514 (2006). DOI: 10.1063/1.2402971
  65. A. Dadgar, F. Schulze, M. Wienecke, A. Gadanecz, J. Blasing, P. Veit, T. Hempel, A. Diez, J. Christen, A. Krost. New J. Physics, 9, 389 (2007). DOI: 10.1088/1367-2630/9/10/389
  66. X. Zhang, Y.-T. Hou, Z.-C. Feng, J.L. Chen. J. Appl. Phys., 89 (11), 6165 (2001). DOI: 10.1063/1.1368162
  67. A.M.Aseev (ed.). Atomnaya struktura poluprovodnikovykh sistem (Novosibirsk: SB RAS, 2006), p. 292
  68. V. Lebedev, J. Jinschek, J. Kraub lich, U. Kaiser, B. Schroter, W. Richter. J. Cryst. Growth, 230 (3), 426 (2001). DOI: 10.1016/S0022-0248(01)01241-6
  69. V.N. Bessolov, E.V. Gushchina, E.V. Konenkova, T.V. L'vova, V.N. Panteleev, M.P. Shcheglov. Tech. Phys. Letters, 44 (1), 81 (2018). DOI: 10.1134/S106378501801011X
  70. W.K. Wang, M.-C. Jiang. Jpn. J. Appl. Phys., 55, 095503 (2016). DOI: 10.7567/JJAP.55.095503
  71. J.-C. Gerbedoen, A. Soltani, S. Joblot, J.-C. De Jaeger, Ch. Gaquiere, Y. Cordier, F. Semond. IEEE Transactions on Electron Devices, 57 (7), 1497 (2010). DOI: 10.1109/TED.2010.2048792
  72. S.T. Kim, Y.J. Lee, S.H. Chung, D.C. Moon. J. Korean Phys. Soc., 33, S313 (1998)
  73. F. Schulze, A. Dadgar, J. Blasing, A. Krost. Appl. Phys. Lett., 84 (23), 4747 (2004). DOI: 10.1063/1.1760214
  74. V.N. Bessolov, E.V. Gushchina, E.V. Konenkova, S.D. Konenkov, T.V. L'vova, V.N. Panteleev, M.P. Shcheglov. Tech. Phys., 64 (4), 531 (2019). DOI: 10.1134/S1063784219040054
  75. V.N. Bessolov, Y.V. Zhilyaev, E.V. Konenkova, N.K. Poletaev, S. Sharofidinov, M.P. Shcheglov. Tech. Phys. Lett., 38 (1), 9 (2012). DOI: 10.1134/S1063785012010051
  76. V.N. Bessolov, E.V. Konenkova, S.A. Kukushkin, A.V. Osipov, S.N. Rodin. Rev. Adv. Mater. Sci., 38, 75 (2014)
  77. V. Bessolov, A. Kalmykov, S. Konenkov, E. Konenkova, S. Kukushkin, A. Myasoedov, A. Osipov, V. Panteleev. Microelectron. Eng., 178, 34 (2017). DOI: 10.1016/j.mee.2017.04.047
  78. H.-J. Lee, S.-Y. Bae, K. Lekhal, A. Tamura, T. Suzuki, M. Kushimoto, Y. Honda, H. Amano. J. Cryst. Growth, 468, 547 (2016). DOI: 10.1016/j.jcrysgro.2016.11.116
  79. R. Ravash, J. Blasing, T. Hempel, M. Noltemeyer, A. Dadgar, J. Christen, A. Krost. Appl. Phys. Lett., 95, 242101 (2009). DOI: 10.1063/1.3272673
  80. S.A. Kukushkin, A.V. Osipov. J. Appl. Phys., 113, 024909 (2013). DOI: 10.1063/1.4773343
  81. V.N. Bessolov, Y.V. Zhilyaev, E.V. Konenkova, S.N. Rodin, N.V. Seredova, N.A. Feoktistov, M.P. Sheglov, A.A. Efimov, S.A. Kukushkin, A.V. Osipov. Russian Chemical Journal, 57 (6), 133 (2013)
  82. V. Bessolov, A. Kalmykov, E. Konenkova, S. Kukushkin, A. Myasoedov, N. Poletaev, S. Rodin. J. Cryst. Growth, 457, 202 (2017). DOI: 10.1016/J.JCRYSGRO.2016.05.025
  83. D.V. Dinh, S. Presa, M. Akhter, P.P. Maaskant, B. Corbett, P.J. Parbrook. Semicond. Sci. Technol., 30, 125007 (2015). DOI: 10.1088/0268-1242/30/12/125007
  84. D.V. Dinh, P.J. Parbrook. J. Cryst. Growth, 501, 34 (2018). DOI: 10.1016/j.jcrysgro.2018.08.021
  85. T. Isshiki, K. Nishio, Y. Abe, J. Komiyama, S. Suzuki, H. Nakanishi. Mater. Scien. Forum, 600--603, 1317 (2009). DOI: 10.4028/www.scientific.net/MSF.600-603.1317
  86. Y. Abe, J. Komiyama, T. Isshiki, S. Suzuki, A. Yoshida, H. Ohishi, H. Nakanishi. Mater. Scien. Forum, 600--603, 1281 (2009). DOI: 10.4028/www.scientific.net/MSF.600-603.1281
  87. V.N. Bessolov, E.V. Konenkova, S.A. Kukushkin, V.I. Nikolaev, A.V. Osipov, S. Sharofidinov, M.P. Shcheglov. Tech. Phys. Lett., 39 (3), 274 (2013). DOI: 10.1134/S106378501303019X
  88. A.A. Koryakin, S.A. Kukushkin, A.V. Osipov, S.Sh. Sharofidinov, M.P. Shcheglov. Materials, 15 (18), 6202 (2022). DOI: 10.3390/ma15186202
  89. H. Li, H. Zhang, J. Song, P. Li, Sh. Nakamura, S.P. DenBaars, Appl. Phys. Rev., 7, 041318 (2020). DOI: 10.1063/5.0024236
  90. T. Mitsunari, H.J. Lee, Y. Honda, H. Amano. J. Cryst. Growth, 431, 60 (2015). DOI: 10.1016/j.jcrysgro.2015.08.027
  91. Y. Honda, N. Kameshiro, M. Yamaguchi, N. Sawaki. J. Cryst. Growth, 242 (1), 82 (2002). DOI: 10.1016/S0022-0248(02)01353-2
  92. R.A. Wind, M.A. Hines. Surf. Science, 460, 21 (2000). DOI: 10.1016/S0039-6028(00)00479-9
  93. V.K. Smirnov, D.S. Kibalov, O.M. Orlov, V.V. Graboshnikov. Nanotechnology, 14, 709 (2003). DOI: 10.1088/0957-4484/14/7/304
  94. V.N. Bessolov, M.E. Kompan, E.V. Konenkova, V.N. Panteleev. Tech. Phys. Lett., 46 (1), 59 (2020). DOI: 10.1134/S1063785020010174
  95. L. Zhang, J. Wu, F. Liu, T. Han, X. Zhu, M. Li, Q. Zhao, T.J. Yu. Cryst. Eng. Comm., 23, 3364 (2021). DOI: 10.1039/D1CE00040C
  96. T. Liu, J. Zhang, X. Su, J. Huang, J. Wang, K. Xu. Sci. Rep., 6, 26040 (2016). DOI: 10.1038/srep26040
  97. L. Huang, Y. Li, W. Wang, X. Li, Y. Zheng, H. Wang, G. Li. Appl. Surf. Science, 435, 163 (2018). DOI: 10.1016/j.apsusc.2017.11.002
  98. V.N. Bessolov, E.V. Konenkova, S.N. Rodin, D.S. Kibalov, V.K. Smirnov. Semiconductors, 55 (4), 471 (2021). DOI: 10.1134/S1063782621040035
  99. R.G. Banal, M. Funato, Y. Kawakami. Phys. Status Solidi C, 6 (2), 599 (2009). DOI: 10.1002/pssc.200880415
  100. T. Szymanski, M. Wosko, B. Paszkiewicz, B. Paszkiewicz, R. Paszkiewicz. J. Vac. Sci. \& Technol. A: Vacuum, Surfaces, and Films, 34, 051504 (2016). DOI: 10.1116/1.4958805
  101. V.N. Bessolov, E.V. Konenkova, T.A. Orlova, S.N. Rodin, M.P. Shcheglov, D.S. Kibalov, V.K. Smirnov. Tech. Phys. Lett., 44 (6), 525 (2018). DOI: 10.1134/S1063785018060172
  102. B. Ma, D. Jinno, H. Miyake, K. Hiramatsu, H. Harima. Appl. Phys. Lett., 100, 011909 (2012). DOI: 10.1063/1.3674983
  103. M. Kuball, J.M. Hayes, A.D. Prins, N.W.A. van Uden, D.J. Dunstan, Ying Shi, J.H. Edgar. Appl. Phys. Lett., 78, 724 (2001). DOI: 10.1063/1.1344567
  104. V.N. Bessolov, M.E. Kompan, E.V. Konenkova, S.N. Rodin. Bull. RAS: Physics, 86 (7), 817 (2022). DOI: 10.3103/S1062873822070103
  105. P. Perlin, A. Polian, T. Suski. Physical Review B, 47 (5), 2874 (1993). DOI: 10.1103/PhysRevB.47.2874
  106. V.N. Bessolov, E.V. Konenkova, V.N. Panteleev. Tech. Phys., 65 (12), 2031 (2020). DOI: 10.1134/S1063784220120051
  107. C.E. Dreyer, A. Janotti, C.G. Van de Walle. Appl. Phys. Lett., 106, 212103 (2015). DOI: 10.1063/1.4921855
  108. E.V. Etzkom, D.R. Clarke. J. Appl. Phys., 89 (2), 1025 (2001). DOI: 10.1063/1.1330243
  109. Sh.-R. Jian, J.-Y. Juang. J. Nanomaterials, 2012, 914184 (2012). DOI: 10.1155/2012/914184
  110. P.R. Tavernier, B. Imer, S.P. DenBaars, D.R. Clarke. Appl. Phys. Lett., 85 (20), 4630 (2004). DOI: 10.1063/1.1818736
  111. W.M. Vim, R.J. Paff. J. Appl. Phys., 45, 1456 (1974). DOI: 10.1063/1.1663432
  112. A.M. Smirnov, E.C. Young, V.E. Bougrov. J.S. Speck, A.E. Romanov. J. Appl. Phys., 126, 245104 (2019). DOI: 10.1063/1.5126195
  113. G.-T. Chen, S.-P. Chang, J.-I. Chyi, M.-N. Chang. Appl. Phys. Lett., 92, 241904 (2008). DOI: 10.1063/1.2946655
  114. M.E. Bachlechner, A. Omeltchenko, A. Nakano, R.K. Kalia, P. Vashishta. Phys. Rev. Lett., 84, 322 (2000). DOI: 10.1103/PhysRevLett.84.322
  115. T. Akiyama, Y. Seta, K. Nakamura, T. Ito. Phys. Rev. Mater., 3, 023401 (2019). DOI: 10.1103/PhysRevMaterials.3.023401
  116. T. Kawamura, T. Akiyama, A. Kitamoto, M. Imanishi, M. Yoshimura, Y. Mori, Y. Morikawa, Y. Kangawa, K. Kakimoto. J. Cryst. Growth, 549, 125868 (2020). DOI: 10.1016/j.jcrysgro.2020.125868
  117. V. Bessolov, A. Zubkova, E. Konenkova, S. Konenkov, S. Kukushkin, T. Orlova, S. Rodin, V. Rubets, D. Kibalov, V. Smirnov. Phys. Status Solidi B, 256 (2), 1800268 (2019). DOI: 10.1002/pssb.201800268
  118. J. Lahnemann, U. Jahn, O. Brandt, T. Flissikowski, P. Dogan, H.T. Grahn. J. Phys. D: Appl. Phys., 47, 423001 (2014). DOI: 10.1088/0022-3727/47/42/423001
  119. P. Vennegues, J.M. Chauveau, Z. Bougrioua, T. Zhu, D. Martin, N. Grandjean. J. Appl. Phys., 112, 113518 (2012). DOI: 10.1063/1.4768686
  120. W. Rieger, R. Dimitrov, D. Brunner, E. Rohrer, O. Ambacher, M. Stutzmann. Phys. Rev. B, 54, 17596 (1996). DOI: 10.1103/PhysRevB.54.17596
  121. V.N. Bessolov, E.V. Konenkova, T.A. Orlova, S.N. Rodin, N.V. Seredova, A.V. Solomnikova, M.P. Shcheglov, D.S. Kibalov, V.K. Smirnov. Semicond., 53 (7), 989 (2019). DOI: 10.1134/S1063782619070054
  122. V.N. Bessolov, E.V. Konenkova, S.A. Kukushkin, A.V. Osipov, S.N. Rodin. Rev. Adv. Mater. Sci., 38 (1), 75 (2014)
  123. V.N. Bessolov, E.V. Konenkova, S.N. Rodin. FTP, 57, 1 (3) (2023). (in Russian). DOI: 10.21883/FTP.2023.01.54923.3994
  124. B.K. Vainstein, A.A. Chernov, L.A. Shuvalov (eds.). Sovremennaya kristallografiya. Vol. 3. Obrazovaniye kristallov (M. Nauka, 1980), p. 408
  125. I. Sunagawa. Crystals Growth, Morphology and Perfection (Cambridge University Press, NY, USA, 2005)
  126. Razia, M. Chugh, M. Ranganathan. Appl. Surf. Science, 566, 150627 (2021). DOI: 10.1016/j.apsusc.2021.150627
  127. S. Washiyama, P. Reddy, F. Kaess, R. Kirste, S. Mita, R. Collazo, Z. Sitar. J. Appl. Phys. 124, 115304 (2018). DOI: 10.1063/5.0002891
  128. P. Reddy, S. Washiyama, F. Kaess, R. Kirste, S. Mita, R. Collazo, Z. Sitar. J. Appl. Phys., 122, 245702 (2017). DOI: 10.1063/1.5002682
  129. K. Wang, R. Kirste, S. Mita, S. Washiyama, W. Mecouch, P. Reddy, R. Collazo, Z. Sitar. Appl. Phys. Lett., 120, 032104 (2022); DOI: 10.1063/5.0077628
  130. X. Yu, Y. Hou, S. Shen, J. Bai, Y. Gong, Y.Zhang, T. Wang. Phys. Status Solidi C, 13 (5-6), 190 (2016). DOI: 10.1002/pssc.201510209
  131. J. Bai, X. Yu, Y. Gong, Y.N. Hou, Y. Zhang, T. Wang. Semicond. Sci. Technol., 30, 065012 (2015). DOI: 10.1088/0268-1242/30/6/065012
  132. Y. Cai, X. Yu, S. Shen, X. Zhao, L. Jiu, C. Zhu, T. Wang. Semicond. Sci. Technol, 34 (4), 045012 (2019). DOI: 10.1088/1361-6641/ab08bf
  133. B. Mao, S. Xing, G. Zhao, L. Wang, N. Zhang, H. Du, G. Liu. Semicond. Sci. Technol., to be published (27.01.2023)
  134. M. Khoury, M. Leroux, M. Nemoz, G. Feuillet, J. Zuniga-Perez, P. Vennegues. J. Cryst. Growth, 419, 88 (2015). DOI: 10.1016/j.jcrysgro.2015.02.098
  135. X. Yu. MOCVD Growth of Novel GaN Materials on Silicon Substrates, A thesis submitted for the degree of Doctor of Philosophy (Ph.D.) (The University of Sheffield, Faculty of Engineering Department of Electronic and Electrical Engineering, January, 2017)
  136. W. Qian, M. Skowronski, G.R. Rohrer. MRS. Online Proceed. Library, 423, 475 (1996). DOI: 10.1557/PROC-423-475
  137. V.N. Bessolov, E.V. Konenkova, T.A. Orlova, S.N. Rodin, A.V. Solomnikova. Tech. Phys., 67 (5), 609 (2022). DOI: 10.21883/TP.2022.05.53677.12-22
  138. P. Hartman, W.G. Perdok. Acta Cryst., 8, 49 (1955). DOI: 10.1107/S0365110X55000121
  139. W.W. Mullins. Metal Surfaces: Structure, Energetics and Kinetics (The American Society of Metals, Metals Park, OH, 1962)
  140. B.-O. Jung, S.-Y. Bae, Y. Kato, M. Imura, D.-S. Lee, Y. Honda, H. Amano. Cryst. Eng. Comm., 16, 2273 (2014). DOI: 10.1039/C3CE42266F
  141. M. Nami, R. Eller, S. Okur, A. Rishinaramangalam, S. Liu, I. Brener, D. Feezell. Nanotechnology, 28, 025202 (2017). DOI: 10.1088/0957-4484/28/2/025202
  142. C. Bayram, J.A. Ott, K.-T. Shiu, Ch.-W. Cheng, Y. Zhu, J. Kim, M. Razeghi, D.K. Sadana. Adv. Funct. Mater., 24 (28), 4492 (2014). DOI: 10.1002/adfm.201304062
  143. T. Narita, T. Hikosaka, Y. Honda, M. Yamaguchi, N. Sawaki. Phys. Stat. Sol. C, 0 (7), 2154 (2003). DOI: 10.1002/pssc.200303511
  144. B. Mao, Sh. Xing, G. Zhao, L. Wang, N. Zhang, H. Du, G. Liu. Semicond. Sci. Technol., 38, 035014 (2023). DOI: 10.1088/1361-6641/acb6ad
  145. S.C. Lee, Y.-B. Jiang, M.T. Durniak, T. Detchprohm, C. Wetzel, S.R.J. Brueck. Cryst. Growth Des., 16, 2183 (2016). DOI: 10.1021/acs.cgd.5b01845
  146. R. Liu, R. Schaller, Ch.Q. Chen, C. Bayram. ACS Photonics, 5 (3), 955 (2018). DOI: 10.1021/acsphotonics.7b01231
  147. S.C. Lee, Y.-B. Jiang, M. Durniak, C. Wetzel, S.R.J. Brueck. Nanotechnology, 30, 025711 (2019). DOI: 10.1088/1361-6528/aae9a2
  148. D.J. As, A. Richter, J. Bush, M. Lubbers, J. Mimkes, K. Lischka. Appl. Phys. Lett., 76, 13 (2000). DOI: 10.1557/PROC-639-G5.9
  149. V.D.C. Garcia, I.E.O. Hinostroza, A.E. Echavarria. E.L. Luna, A.G. Rodriguez, M.A. Vidal. J. Cryst. Growth, 418, 120 (2015). DOI: 10.1016/j.jcrysgro.2015.02.033
  150. C.H. Wei, Z.Y. Xie, L.Y. Li, Q.M. Yu, J.H. Edgar, J. Electron. Mater., 29 (3), 317 (2000). DOI: 10.1007/s11664-000-0070-z
  151. C. Bayram, J.A. Ott, K.-T. Shiu, C.-W. Cheng, Y. Zhu, J. Kim, M. Razeghi, D.K. Sadana. Adv. Funct. Mater., 24 (28), 4492 (2014). DOI: 10.1002/adfm.201304062
  152. V. Bessolov, E. Konenkova, S. Konenkov, S. Rodin, N. Seredova. J. Phys.: Conf. Ser., 1697 (1), 012099 (2020). DOI: 10.1088/1742-6596/1697/1/012099
  153. K.H. Plog, O. Brandt, H. Yang, B. Yang, A. Trampert. J. Vac. Sci. Technol., 16, 2229 (1998). DOI: 10.1116/1.590153
  154. A.S. Bakri, N. Nayan, A.Sh.A. Bakar, M. Tahan, N.A. Raship, W.H.A. Majid, M.K. Ahmad, S.Ch. Fhong, M.Z. Sahdan, M.Y. Ahmad. Intern. J. Nanoelectron. Mater., 13 (1), 199 (2020)
  155. Y. Zhong, J. Zhang, Sh. Wu, L. Jia, X. Yang, Y. Liu, Y. Zhang, Q. Sun. Fundamental Research, 2, 462 (2021). DOI: 10.1016/j.fmre.2021.11.028
  156. Th.A. Tabbakh, D. Anandan, M.J. Sheldon, P. Tyagi, A. Alfaifi. Recent Advancements in GaN LED Technology (IntechOpen, 2022). DOI: 10.5772/intechopen.107365
  157. J.W. Chung, J.-K. Lee, E.L. Piner, T. Palacios. IEEE Electron Device Lett., 30 (10), 1015 (2009). DOI: 10.1109/led.2009.2027914
  158. H. Furuya, N. Okada, K. Tadatomo. Phys. Stat. Sol. C, 9, 568 (2012). DOI: 10.1002/pssc.201100352
  159. H. Furuya, Y. Hashimoto, K. Yamane, N. Okada, K. Tadatomo. J. Cryst. Growth, 391, 41 (2014). DOI: 10.1016/j.jcrysgro.2013.12.032
  160. P. de Mierry, L. Kappei, F. Tendille, P. Vennegues, M. Leroux, J. Zuniga-Perez. Phys. Stat. Sol. B, 253, 105 (2016). DOI: 10.1002/pssb.201552298
  161. N. Okada, A. Kurisu, K. Murakami, K. Tadatomo. Appl. Phys. Express, 2, 091001 (2009). DOI: 10.1143/apex.2.091001
  162. F. Tendille, P. De Mierry, P. Vennegues, S. Chenot, M. Teisseire. J. Cryst. Growth, 404, 177 (2014). DOI: 10.1016/j.jcrysgro.2014.07.020
  163. N. Okada, K. Uchida, S. Miyoshi, K. Tadatomo. Phys. Stat. Sol. A, 209, 469 (2012). DOI: 10.1002/pssa.201100385
  164. K. Ding, V. Avrutin, N. Izyumskaya, S. Metzner, F. Bertramb J. Christen, U. Ozgur, H. Morkoc. Proc. SPIE, 10532, Gallium Nitride Materials and Devices XIII, 1053208 (2018). DOI: 10.1117/12.2291281
  165. T. Hikosaka, T. Tanikawa, Y. Honda, M. Yamaguchi, N. Sawaki. Phys. Status Solidi C, 5, 2234 (2008). DOI: 10.1002/pssc.200779236
  166. T. Murase, T. Tanikawa, Y. Honda, M. Yamaguchi, H. Amano. Phys. Status Solidi C, 8 (7-8), 2160 (2011). DOI: 10.1002/pssc.201000990
  167. T. Tanikawa, T. Sano, M. Kushimoto, Y. Honda, M. Yamaguchi, H. Amano. Japanese Journal of Applied Physics, 52, 08JC05 (2013). DOI: 10.7567/JJAP.52.08JC05
  168. M. Kushimoto, T. Tanikawa, Y. Honda, H. Amano. Appl. Phys. Express, 8, 022702 (2015). DOI: 10.7567/APEX.8.022702
  169. B. Reuters, J. Strate, A. Wille, M. Marx, G. Lukens, L. Heuken, M. Heuken, H. Kalisch, A. Vescan. J. Phys. D: Appl. Phys., 48, 485103 (2015). DOI: 10.1088/0022-3727/48/48/485103
  170. S. Shen, X. Zhao, X.Yu, C. Zhu, J. Bai, T. Wang. Phys. Status Solidi A, 217, 1900654 (2020). DOI: 10.1002/pssa.201900654
  171. X. Yu, Y. Hou, S. Shen, J. Bai, Y. Gong, Y. Zhang, T. Wang. Phys. Status Solidi C, 13 (5-6), 190 (2016). DOI: 10.1002/pssc.201510209
  172. X. Zhao, K. Huang, J. Bruckbauer, S. Shen, C. Zhu, P. Fletcher, P. Feng, Y. Cai, J. Bai, C. Trager-Cowan, R.W. Martin, T. Wang. Scientific Reports, 10, 12650 (2020). DOI: 10.1038/s41598-020-69609-4
  173. V.N. Bessolov, M.E. Kompan, E.V. Konenkova, V.N. Panteleev, S.N. Rodin, M.P. Shcheglov. Tech. Phys. Lett., 45 (6), 529 (2019). DOI: 10.1134/S106378501906004X
  174. B. Wannous, P.-M. Coulon, L. Dupre, F. Rol, N. Rochat, J. Zuniga-Perez, P. Vennegues, G. Feuillet, F. Templier. Phys. Status Solidi B, 2200582 (2023). DOI: 10.1002/pssb.202200582
  175. Y. Wu, Y. Xiao, I. Navid, K. Sun, Y. Malhotra, P. Wang, D. Wang, Y. Xu, A. Pandey, M. Reddeppa, W. Shin, J. Liu, J. Min, Z. Mi. Light Sci. Appl., 11, 294 (2022). DOI: 10.1038/s41377-022-00985-4
  176. M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H. Gao, Y. Zhou, Sh. Zhang, D. Li, L. Zhang, J. Liu, H.-B. Wang, M. Ikeda, X. Zheng, H. Yang. ACS Photonics, 5 (3), 699 2018). DOI: 10.1021/acsphotonics.7b01215

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru