Semipolar wide-band III-N-layers on a silicon substrate: orientation controlling epitaxy and the properties of structures (review)
Bessolov V.N.1, Konenkova E.V.1
1Ioffe Institute, St. Petersburg, Russia
Email: lena@triat.ioffe.ru
The experimental results of the recent years on the synthesis of semipolar wide-band III-N-layers on a nanostructured silicon substrate are summarized. The idea of synthesis involves the formation of Si(111) side walls on the silicon surface, then the epitaxial nucleation of the layer in the " direction of the crystal, followed by the fusion of blocks in the semipolar direction of the surface. Examples of orientation controlling epitaxy of semipolar AlN(10-11)-, GaN(10-11)-, GaN(11-22)-layers synthesized on nanostructured Si(100), Si(113) substrates by methods of metalorganic vapor phase epitaxy and hydride vapor phase epitaxy are shown. The review presents a summary and the prospects for further developments in the field of optoelectronics based on the platform - "semipolar GaN on Si". Keywords: wide-band semipolar III-N-layers, orientation controlling epitaxy, nanostructured silicon substrate
- W.C. Johnson, J.B. Parsons, M.C. Crew. J. Phys. Chem., 36, 2561 (1932)
- H.P. Maruska, J.J. Tietjen. Appl. Phys. Lett., 15, 327 (1969)
- H.M. Manasevit, F.M. Erdmann, W.I. Simpson. J. Electrochem. Soc., 118, 1864 (1971). DOI: 10.1149/1.2407853
- H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda. Appl. Phys. Lett., 48, 353 (1986). DOI: 10.1063/1.96549
- S. Nakamura, N. Iwasa, M. Senoh, T. Mukai. Jpn. J. Appl. Phys., 31, 1258 (1992). DOI: 10.1143/JJAP.31.1258
- S. Nakamura, M. Senoh, T. Mukai. Jpn. J. Appl. Phys., 32, L8 (1993). DOI: 10.1143/JJAP.32.L8
- R.R. Sumathi. ECS J. Solid State Sci. Technol., 10, 035001 (2021). DOI: 10.1149/2162-8777/abe6f5
- V.Yu. Davydov, A.A. Klochikhin. Semicond., 38 (8), 861 (2004)
- A.E. Romanov, T.J. Baker, S. Nakamura, J.S. Speck. J. Appl. Phys., 100, 023522 (2006). DOI: 10.1063/1.2218385
- F. Wu, E.C. Young, I. Koslow, M.T. Hardy, P.S. Hsu, A.E. Romanov, S. Nakamura, S.P. DenBaars, J.S. Speck. Appl. Phys. Lett., 99, 251909 (2011). DOI: 10.1063/1.3671113
- T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, I. Akasaki. Jpn. J. Appl. Phys., 36, L382 (1997). DOI: 10.1143/JJAP.36.L382
- D. Rosales, B. Gil, T. Bretagnon, B. Guizal, F. Zhang, S. Okur, M. Monavarian, N. Izyumskaya, V. Avrutin, U. Ozgur, H. Morko c, J.H. Leach. J. Appl. Phys., 115, 073510 (2014). DOI: 10.1063/1.4865959
- W.G. Scheibenzuber, U.T. Schwarz, R.G. Veprek, B. Witzigmann, A. Hangleiter. Phys. Rev. B, 80, 115320 (2009). DOI: 10.1103/PhysRevB.80.115320
- F. Scholz. Semicond. Sci. Technol., 27, 024002 (2012). DOI: 10.1088/0268-1242/27/2/024002
- T. Wang. Semicond. Sci. Technol., 31, 093003 (2016). DOI: 10.1088/0268-1242/31/9/093003
- M. Monavarian, A. Rashidi, D. Feezell. Phys. Status Solidi A, 216, 1800628 (2019). DOI: 10.1002/pssa.201800628
- J.E. Northrup. Appl. Phys. Lett., 95, 133107 (2009). DOI: 10.1063/1.3240401
- T. Takeuchi, H. Amano, I. Akasaki. Jpn. J. Appl. Phys., 39, 413 (2000). DOI: 10.1143/JJAP.39.413
- S.H. Park. J. Appl. Phys., 91, 9904 (2002). DOI: 10.1063/1.1480465
- T. Sasaki, S. Zembutsu. J. Appl. Phys., 61, 2533 (1987). DOI: 10.1063/1.337929
- P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K.H. Ploog, Nature, 406, 865 (2000). DOI: 10.1038/35022529
- X. Ni, Y. Fu,Y. T. Moon, N. Biyikli, H. Morko c. J. Crystal Growth, 290, 166 (2006). DOI: 10.1016/j.jcrysgro.2006.01.008
- Q.S. Paduano, D.W. Weyburne, D.H. Tomich. J. Cryst. Growth, 367, 104 (2013). DOI: 10.1016/j.jcrysgro.2012.12.028
- R. Ravash, J. Blaesing, A. Dadgar, A. Krost. Appl. Phys. Lett., 97, 142102 (2010). DOI: 10.1063/1.3492835
- F. Ranalli, P.J. Parbrook, J. Bai, K.B. Lee, T. Wang, A.G. Cullis. Phys. Stat. Sol. C, 6, S780 (2009). DOI: 10.1002/pssc.200880948
- K. Okamoto, J. Kashiwagi, T. Tanaka, M. Kubota. Appl. Phys. Lett., 94, 071105 (2009). DOI: 10.1063/1.3078818
- Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama. Appl. Phys. Express, 2, 082101 (2009). DOI: 10.1143/APEX.2.082101
- H. Asamizu, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura. Appl. Phys. Express, 1, 091102 (2008). DOI: 10.1143/APEX.1.091102
- Y. Yoshizumi, M. Adachi, Y. Enya, T. Kyono, S. Tokuyama, T. Sumitomo, K. Akita, T. Ikegami, M. Ueno, K. Katayama. Appl. Phys. Express, 2, 092101 (2009). DOI: 10.1143/APEX.2.092101
- M. Adachi, Y. Yoshizumi, Y. Enya, T. Kyono, T. Sumitomo, S. Tokuyama, S. Takagi, K. Sumiyoshi, N. Saga, T. Ikegami. Appl. Phys. Express, 3, 121001 (2010). DOI: 10.1143/APEX.3.121001
- K.K. Fujito, S. Kubo, I. Fujimura. MRS Bull., 34, 313 (2009). DOI: 10.1557/mrs2009.92
- H. Masui, S. Nakamura, S.P. DenBaars, U.K. Mishra. IEEE Trans. Electron Devices, 57, 88 (2010). DOI: 10.1109/TED.2009.2033773
- S. Guha, N.A. Bojarczuk. Appl. Phys. Lett., 72, 415 (1998). DOI: 10.1063/1.120775
- S. Guha, N.A. Bojarczuk. Appl. Phys. Lett., 73, 1487 (1998). DOI: 10.1063/1.122181
- A.T. Schremer, J.A. Smart, Y. Wang, O. Ambacher, N.C. MacDonald, J.R. Shealy. Appl. Phys. Lett., 76, 736 (2000). DOI: 10.1063/1.125878
- A. Dadgar. Physica Status Solidi (b), 252, 1063 (2015). DOI: 10.1002/pssb.201451656
- A. Krost, A. Dadgar. Mater. Sci. \& Engineer. B, B93, 77 (2009). DOI: 10.1016/S0921-5107(02)00043-0
- H. Wang, Z. Lin, W. Wang, G. Li, J. Luo. J. Alloys and Compounds, 718, 28 (2017). DOI: 10.1016/j.jallcom.2017.05.009
- H.R. Shanks, P.D. Maycock, P.H. Sidles, G.C. Danielson. Phys. Rev., 130 (5), 1743 (1963). DOI: 10.1103/PhysRev.130.1743
- M.K. Sunkara, S. Sharma, R. Miranda, G. Lian, E.C. Dickey. Appl. Phys. Lett., 79, 1546 (2001). DOI: 10.1063/1.1401089
- I. Kim, J. Holmi, R. Raju, A. Haapalinna, S. Suihkonen. J. Phys. Commun., 4, 045010 (2020). DOI: 10.1088/2399-6528/ab885c
- Y. Zheng, M. Agrawal, N. Dharmarasu, K. Radhakrishnan, S. Patwal. Appl. Surf. Sci., 481, 319 (2019). DOI: 10.1016/j.apsusc.2019.03.046
- R.G. Banal, M. Funato, Y. Kawakami. Phys. Status Solidi (c), 6, 599 (2009). DOI: 10.1002/pssc.200880415
- K.-L. Lin, E.-Y. Chang, J.-Ch. Huang, W.-Ch. Huang, Y.-L. Hsiao, Ch.H. Chiang, T. Li, D. Tweet, J.-Sh. Maa, Sh.-T. Hsu. Phys. Stat. Sol. (c), 5 (6), 1536 (2008). DOI: 10.1002/pssc.200778454
- S.L. Selvaraj, A. Watanabe, A. Wakejima, T. Egawa, IEEE Electron Device Lett., 33, 1375 (2012). DOI: 10.1109/LED.2012.2207367
- N. Wu, N. Wu, Zh. Xing, Sh. Li, L. Luo, F. Zeng, G. Li. Semicond. Sci. Technol., 38, 063002 (2023). DOI: 10.1088/1361-6641/acca9d
- T. Sasaki, T. Matsuoka. J. Appl. Phys., 77, 192 (1995). DOI: 10.1063/1.359368
- A. Dadgar, J. Blasing, A. Diez, A. Alam, M. Heuken, A. Krost. Jpn. J. Appl. Phys., 39, L1183 (2000). DOI: 10.1143/JJAP.39.L1183
- J. Zhang, X. Yang, Y. Feng, Y. Li, M. Wang, J. Shen, L. Wei, D. Liu, S. Wu, Z. Cai, F. Xu, X. Wang, W. Ge, B. Shen. Phys. Rev. Materials, 4, 073402 (2020). DOI: 10.1103/PhysRevMaterials.4.073402
- Y. Sakai, I. Kawayama, H. Nakanishi, M. Tonouchi. Scientific Reports, 5, 13860 (2015). DOI: 10.1038/srep13860
- S. Bidnyk, B.D. Little, Y.H. Cho, J. Krasinski, J.J. Song, W. Yang, S.A. McPherson. Appl. Phys. Lett., 73, 2242 (1998). DOI: 10.1063/1.121689
- G.P. Yablonskii, E.V. Lutsenko, V.N. Pavlovskii, V.Z. Zubialevich, A.L. Gurskii, H. Kalisch, A. Szymakowskii, R.A. Jansen, A. Alam, Y. Dikme, B. Schineller, M. Heuken, Phys. Status Solidi A, 192, 54 (2002). DOI: 10.1002/1521-396X(200207)192:1<54::AID-PSSA54>3.0.CO;2-2
- B.A. Shuhaimi, H. Kawato, Y. Zhu, T. Egawa. J. Phys. Conf., 152, 012007 (2009). DOI: 10.1088/1742-6596/152/1/012007
- X. Lu, C. Liu, H. Jiang, X. Zou, A. Zhang, K.M. Lau. Appl. Phys. Lett., 109, 053504 (2016). DOI: 10.1063/1.4960105
- J. Yuan, W. Cai, X. Gao, G. Zhu, D. Bai, H. Zhu, Y. Wang. Appl. Phys. Express, 9, 032202 (2016). DOI: 10.7567/APEX.9.032202
- W. Cai, X. Gao, W. Yuan, Y. Yang, J. Yuan, H. Zhu, Y. Wang. Appl. Phys. Express, 9, 052204 (2016)
- Y. Wang, G. Zhu, W. Cai, X. Gao, Y. Yang, J. Yuan, Z. Shi, H. Zhu. Appl. Phys. Lett., 108, 162102 (2016). DOI: 10.1063/1.4947280
- D. Bai, T. Wu, X. Li, X. Gao, Y. Xu, Z. Cao, H. Zhu, Y. Wang. Appl. Phys. B, 122, 9 (2016). DOI: 10.1007/s00340-015-6293-8
- D. Bai, X. Gao, W. Cai, W. Yuan, Z. Shi, X. Li, Y. Xu, J. Yuan, G. Zhu, Y. Yang, C. Yang, X. Cao, H. Zhu, Y. Wang. Appl. Phys. A, 122, 535 (2016). DOI: 10.1007/s00339-016-0075-y
- W. Cai, Y. Yang, X. Gao, J. Yuan, W. Yuan, H. Zhu, Y. Wang. Opt. Express, 24, 6004 (2016). DOI: 10.1364/OE.24.006004
- Y. Jiang, Z. Shi, S. Zhang, J. Yuan, Z. Hu, X. Shen, B. Zhu, Y. Wang. IEEE Electron Dev. Lett., 38, 1684 (2017). DOI: 10.1109/LED.2017.2760318
- T. Narita, H. Iguchi, K. Horibuchi, N. Otake, S. Hoshi, K. Tomita. Jpn. J. Appl.Phys., 55, 05FB01 (2016). DOI: 10.7567/JJAP.55.05FB01
- Y. Dai, S. Li, H. Gao, W. Wang, Q. Sun, Q. Peng, C. Gui, Z. Qian, S. Liu. J. Mater Sci: Mater. Electron., 27, 2004 (2016). DOI: 10.1007/s10854-015-3984-1
- E. Valcheva, J. Birch, P.O.A. Persson, S. Tungasmita, L. Hultman. J. Appl. Phys., 100 (12), 123514 (2006). DOI: 10.1063/1.2402971
- A. Dadgar, F. Schulze, M. Wienecke, A. Gadanecz, J. Blasing, P. Veit, T. Hempel, A. Diez, J. Christen, A. Krost. New J. Physics, 9, 389 (2007). DOI: 10.1088/1367-2630/9/10/389
- X. Zhang, Y.-T. Hou, Z.-C. Feng, J.L. Chen. J. Appl. Phys., 89 (11), 6165 (2001). DOI: 10.1063/1.1368162
- A.M.Aseev (ed.). Atomnaya struktura poluprovodnikovykh sistem (Novosibirsk: SB RAS, 2006), p. 292
- V. Lebedev, J. Jinschek, J. Kraub lich, U. Kaiser, B. Schroter, W. Richter. J. Cryst. Growth, 230 (3), 426 (2001). DOI: 10.1016/S0022-0248(01)01241-6
- V.N. Bessolov, E.V. Gushchina, E.V. Konenkova, T.V. L'vova, V.N. Panteleev, M.P. Shcheglov. Tech. Phys. Letters, 44 (1), 81 (2018). DOI: 10.1134/S106378501801011X
- W.K. Wang, M.-C. Jiang. Jpn. J. Appl. Phys., 55, 095503 (2016). DOI: 10.7567/JJAP.55.095503
- J.-C. Gerbedoen, A. Soltani, S. Joblot, J.-C. De Jaeger, Ch. Gaquiere, Y. Cordier, F. Semond. IEEE Transactions on Electron Devices, 57 (7), 1497 (2010). DOI: 10.1109/TED.2010.2048792
- S.T. Kim, Y.J. Lee, S.H. Chung, D.C. Moon. J. Korean Phys. Soc., 33, S313 (1998)
- F. Schulze, A. Dadgar, J. Blasing, A. Krost. Appl. Phys. Lett., 84 (23), 4747 (2004). DOI: 10.1063/1.1760214
- V.N. Bessolov, E.V. Gushchina, E.V. Konenkova, S.D. Konenkov, T.V. L'vova, V.N. Panteleev, M.P. Shcheglov. Tech. Phys., 64 (4), 531 (2019). DOI: 10.1134/S1063784219040054
- V.N. Bessolov, Y.V. Zhilyaev, E.V. Konenkova, N.K. Poletaev, S. Sharofidinov, M.P. Shcheglov. Tech. Phys. Lett., 38 (1), 9 (2012). DOI: 10.1134/S1063785012010051
- V.N. Bessolov, E.V. Konenkova, S.A. Kukushkin, A.V. Osipov, S.N. Rodin. Rev. Adv. Mater. Sci., 38, 75 (2014)
- V. Bessolov, A. Kalmykov, S. Konenkov, E. Konenkova, S. Kukushkin, A. Myasoedov, A. Osipov, V. Panteleev. Microelectron. Eng., 178, 34 (2017). DOI: 10.1016/j.mee.2017.04.047
- H.-J. Lee, S.-Y. Bae, K. Lekhal, A. Tamura, T. Suzuki, M. Kushimoto, Y. Honda, H. Amano. J. Cryst. Growth, 468, 547 (2016). DOI: 10.1016/j.jcrysgro.2016.11.116
- R. Ravash, J. Blasing, T. Hempel, M. Noltemeyer, A. Dadgar, J. Christen, A. Krost. Appl. Phys. Lett., 95, 242101 (2009). DOI: 10.1063/1.3272673
- S.A. Kukushkin, A.V. Osipov. J. Appl. Phys., 113, 024909 (2013). DOI: 10.1063/1.4773343
- V.N. Bessolov, Y.V. Zhilyaev, E.V. Konenkova, S.N. Rodin, N.V. Seredova, N.A. Feoktistov, M.P. Sheglov, A.A. Efimov, S.A. Kukushkin, A.V. Osipov. Russian Chemical Journal, 57 (6), 133 (2013)
- V. Bessolov, A. Kalmykov, E. Konenkova, S. Kukushkin, A. Myasoedov, N. Poletaev, S. Rodin. J. Cryst. Growth, 457, 202 (2017). DOI: 10.1016/J.JCRYSGRO.2016.05.025
- D.V. Dinh, S. Presa, M. Akhter, P.P. Maaskant, B. Corbett, P.J. Parbrook. Semicond. Sci. Technol., 30, 125007 (2015). DOI: 10.1088/0268-1242/30/12/125007
- D.V. Dinh, P.J. Parbrook. J. Cryst. Growth, 501, 34 (2018). DOI: 10.1016/j.jcrysgro.2018.08.021
- T. Isshiki, K. Nishio, Y. Abe, J. Komiyama, S. Suzuki, H. Nakanishi. Mater. Scien. Forum, 600--603, 1317 (2009). DOI: 10.4028/www.scientific.net/MSF.600-603.1317
- Y. Abe, J. Komiyama, T. Isshiki, S. Suzuki, A. Yoshida, H. Ohishi, H. Nakanishi. Mater. Scien. Forum, 600--603, 1281 (2009). DOI: 10.4028/www.scientific.net/MSF.600-603.1281
- V.N. Bessolov, E.V. Konenkova, S.A. Kukushkin, V.I. Nikolaev, A.V. Osipov, S. Sharofidinov, M.P. Shcheglov. Tech. Phys. Lett., 39 (3), 274 (2013). DOI: 10.1134/S106378501303019X
- A.A. Koryakin, S.A. Kukushkin, A.V. Osipov, S.Sh. Sharofidinov, M.P. Shcheglov. Materials, 15 (18), 6202 (2022). DOI: 10.3390/ma15186202
- H. Li, H. Zhang, J. Song, P. Li, Sh. Nakamura, S.P. DenBaars, Appl. Phys. Rev., 7, 041318 (2020). DOI: 10.1063/5.0024236
- T. Mitsunari, H.J. Lee, Y. Honda, H. Amano. J. Cryst. Growth, 431, 60 (2015). DOI: 10.1016/j.jcrysgro.2015.08.027
- Y. Honda, N. Kameshiro, M. Yamaguchi, N. Sawaki. J. Cryst. Growth, 242 (1), 82 (2002). DOI: 10.1016/S0022-0248(02)01353-2
- R.A. Wind, M.A. Hines. Surf. Science, 460, 21 (2000). DOI: 10.1016/S0039-6028(00)00479-9
- V.K. Smirnov, D.S. Kibalov, O.M. Orlov, V.V. Graboshnikov. Nanotechnology, 14, 709 (2003). DOI: 10.1088/0957-4484/14/7/304
- V.N. Bessolov, M.E. Kompan, E.V. Konenkova, V.N. Panteleev. Tech. Phys. Lett., 46 (1), 59 (2020). DOI: 10.1134/S1063785020010174
- L. Zhang, J. Wu, F. Liu, T. Han, X. Zhu, M. Li, Q. Zhao, T.J. Yu. Cryst. Eng. Comm., 23, 3364 (2021). DOI: 10.1039/D1CE00040C
- T. Liu, J. Zhang, X. Su, J. Huang, J. Wang, K. Xu. Sci. Rep., 6, 26040 (2016). DOI: 10.1038/srep26040
- L. Huang, Y. Li, W. Wang, X. Li, Y. Zheng, H. Wang, G. Li. Appl. Surf. Science, 435, 163 (2018). DOI: 10.1016/j.apsusc.2017.11.002
- V.N. Bessolov, E.V. Konenkova, S.N. Rodin, D.S. Kibalov, V.K. Smirnov. Semiconductors, 55 (4), 471 (2021). DOI: 10.1134/S1063782621040035
- R.G. Banal, M. Funato, Y. Kawakami. Phys. Status Solidi C, 6 (2), 599 (2009). DOI: 10.1002/pssc.200880415
- T. Szymanski, M. Wosko, B. Paszkiewicz, B. Paszkiewicz, R. Paszkiewicz. J. Vac. Sci. \& Technol. A: Vacuum, Surfaces, and Films, 34, 051504 (2016). DOI: 10.1116/1.4958805
- V.N. Bessolov, E.V. Konenkova, T.A. Orlova, S.N. Rodin, M.P. Shcheglov, D.S. Kibalov, V.K. Smirnov. Tech. Phys. Lett., 44 (6), 525 (2018). DOI: 10.1134/S1063785018060172
- B. Ma, D. Jinno, H. Miyake, K. Hiramatsu, H. Harima. Appl. Phys. Lett., 100, 011909 (2012). DOI: 10.1063/1.3674983
- M. Kuball, J.M. Hayes, A.D. Prins, N.W.A. van Uden, D.J. Dunstan, Ying Shi, J.H. Edgar. Appl. Phys. Lett., 78, 724 (2001). DOI: 10.1063/1.1344567
- V.N. Bessolov, M.E. Kompan, E.V. Konenkova, S.N. Rodin. Bull. RAS: Physics, 86 (7), 817 (2022). DOI: 10.3103/S1062873822070103
- P. Perlin, A. Polian, T. Suski. Physical Review B, 47 (5), 2874 (1993). DOI: 10.1103/PhysRevB.47.2874
- V.N. Bessolov, E.V. Konenkova, V.N. Panteleev. Tech. Phys., 65 (12), 2031 (2020). DOI: 10.1134/S1063784220120051
- C.E. Dreyer, A. Janotti, C.G. Van de Walle. Appl. Phys. Lett., 106, 212103 (2015). DOI: 10.1063/1.4921855
- E.V. Etzkom, D.R. Clarke. J. Appl. Phys., 89 (2), 1025 (2001). DOI: 10.1063/1.1330243
- Sh.-R. Jian, J.-Y. Juang. J. Nanomaterials, 2012, 914184 (2012). DOI: 10.1155/2012/914184
- P.R. Tavernier, B. Imer, S.P. DenBaars, D.R. Clarke. Appl. Phys. Lett., 85 (20), 4630 (2004). DOI: 10.1063/1.1818736
- W.M. Vim, R.J. Paff. J. Appl. Phys., 45, 1456 (1974). DOI: 10.1063/1.1663432
- A.M. Smirnov, E.C. Young, V.E. Bougrov. J.S. Speck, A.E. Romanov. J. Appl. Phys., 126, 245104 (2019). DOI: 10.1063/1.5126195
- G.-T. Chen, S.-P. Chang, J.-I. Chyi, M.-N. Chang. Appl. Phys. Lett., 92, 241904 (2008). DOI: 10.1063/1.2946655
- M.E. Bachlechner, A. Omeltchenko, A. Nakano, R.K. Kalia, P. Vashishta. Phys. Rev. Lett., 84, 322 (2000). DOI: 10.1103/PhysRevLett.84.322
- T. Akiyama, Y. Seta, K. Nakamura, T. Ito. Phys. Rev. Mater., 3, 023401 (2019). DOI: 10.1103/PhysRevMaterials.3.023401
- T. Kawamura, T. Akiyama, A. Kitamoto, M. Imanishi, M. Yoshimura, Y. Mori, Y. Morikawa, Y. Kangawa, K. Kakimoto. J. Cryst. Growth, 549, 125868 (2020). DOI: 10.1016/j.jcrysgro.2020.125868
- V. Bessolov, A. Zubkova, E. Konenkova, S. Konenkov, S. Kukushkin, T. Orlova, S. Rodin, V. Rubets, D. Kibalov, V. Smirnov. Phys. Status Solidi B, 256 (2), 1800268 (2019). DOI: 10.1002/pssb.201800268
- J. Lahnemann, U. Jahn, O. Brandt, T. Flissikowski, P. Dogan, H.T. Grahn. J. Phys. D: Appl. Phys., 47, 423001 (2014). DOI: 10.1088/0022-3727/47/42/423001
- P. Vennegues, J.M. Chauveau, Z. Bougrioua, T. Zhu, D. Martin, N. Grandjean. J. Appl. Phys., 112, 113518 (2012). DOI: 10.1063/1.4768686
- W. Rieger, R. Dimitrov, D. Brunner, E. Rohrer, O. Ambacher, M. Stutzmann. Phys. Rev. B, 54, 17596 (1996). DOI: 10.1103/PhysRevB.54.17596
- V.N. Bessolov, E.V. Konenkova, T.A. Orlova, S.N. Rodin, N.V. Seredova, A.V. Solomnikova, M.P. Shcheglov, D.S. Kibalov, V.K. Smirnov. Semicond., 53 (7), 989 (2019). DOI: 10.1134/S1063782619070054
- V.N. Bessolov, E.V. Konenkova, S.A. Kukushkin, A.V. Osipov, S.N. Rodin. Rev. Adv. Mater. Sci., 38 (1), 75 (2014)
- V.N. Bessolov, E.V. Konenkova, S.N. Rodin. FTP, 57, 1 (3) (2023). (in Russian). DOI: 10.21883/FTP.2023.01.54923.3994
- B.K. Vainstein, A.A. Chernov, L.A. Shuvalov (eds.). Sovremennaya kristallografiya. Vol. 3. Obrazovaniye kristallov (M. Nauka, 1980), p. 408
- I. Sunagawa. Crystals Growth, Morphology and Perfection (Cambridge University Press, NY, USA, 2005)
- Razia, M. Chugh, M. Ranganathan. Appl. Surf. Science, 566, 150627 (2021). DOI: 10.1016/j.apsusc.2021.150627
- S. Washiyama, P. Reddy, F. Kaess, R. Kirste, S. Mita, R. Collazo, Z. Sitar. J. Appl. Phys. 124, 115304 (2018). DOI: 10.1063/5.0002891
- P. Reddy, S. Washiyama, F. Kaess, R. Kirste, S. Mita, R. Collazo, Z. Sitar. J. Appl. Phys., 122, 245702 (2017). DOI: 10.1063/1.5002682
- K. Wang, R. Kirste, S. Mita, S. Washiyama, W. Mecouch, P. Reddy, R. Collazo, Z. Sitar. Appl. Phys. Lett., 120, 032104 (2022); DOI: 10.1063/5.0077628
- X. Yu, Y. Hou, S. Shen, J. Bai, Y. Gong, Y.Zhang, T. Wang. Phys. Status Solidi C, 13 (5-6), 190 (2016). DOI: 10.1002/pssc.201510209
- J. Bai, X. Yu, Y. Gong, Y.N. Hou, Y. Zhang, T. Wang. Semicond. Sci. Technol., 30, 065012 (2015). DOI: 10.1088/0268-1242/30/6/065012
- Y. Cai, X. Yu, S. Shen, X. Zhao, L. Jiu, C. Zhu, T. Wang. Semicond. Sci. Technol, 34 (4), 045012 (2019). DOI: 10.1088/1361-6641/ab08bf
- B. Mao, S. Xing, G. Zhao, L. Wang, N. Zhang, H. Du, G. Liu. Semicond. Sci. Technol., to be published (27.01.2023)
- M. Khoury, M. Leroux, M. Nemoz, G. Feuillet, J. Zuniga-Perez, P. Vennegues. J. Cryst. Growth, 419, 88 (2015). DOI: 10.1016/j.jcrysgro.2015.02.098
- X. Yu. MOCVD Growth of Novel GaN Materials on Silicon Substrates, A thesis submitted for the degree of Doctor of Philosophy (Ph.D.) (The University of Sheffield, Faculty of Engineering Department of Electronic and Electrical Engineering, January, 2017)
- W. Qian, M. Skowronski, G.R. Rohrer. MRS. Online Proceed. Library, 423, 475 (1996). DOI: 10.1557/PROC-423-475
- V.N. Bessolov, E.V. Konenkova, T.A. Orlova, S.N. Rodin, A.V. Solomnikova. Tech. Phys., 67 (5), 609 (2022). DOI: 10.21883/TP.2022.05.53677.12-22
- P. Hartman, W.G. Perdok. Acta Cryst., 8, 49 (1955). DOI: 10.1107/S0365110X55000121
- W.W. Mullins. Metal Surfaces: Structure, Energetics and Kinetics (The American Society of Metals, Metals Park, OH, 1962)
- B.-O. Jung, S.-Y. Bae, Y. Kato, M. Imura, D.-S. Lee, Y. Honda, H. Amano. Cryst. Eng. Comm., 16, 2273 (2014). DOI: 10.1039/C3CE42266F
- M. Nami, R. Eller, S. Okur, A. Rishinaramangalam, S. Liu, I. Brener, D. Feezell. Nanotechnology, 28, 025202 (2017). DOI: 10.1088/0957-4484/28/2/025202
- C. Bayram, J.A. Ott, K.-T. Shiu, Ch.-W. Cheng, Y. Zhu, J. Kim, M. Razeghi, D.K. Sadana. Adv. Funct. Mater., 24 (28), 4492 (2014). DOI: 10.1002/adfm.201304062
- T. Narita, T. Hikosaka, Y. Honda, M. Yamaguchi, N. Sawaki. Phys. Stat. Sol. C, 0 (7), 2154 (2003). DOI: 10.1002/pssc.200303511
- B. Mao, Sh. Xing, G. Zhao, L. Wang, N. Zhang, H. Du, G. Liu. Semicond. Sci. Technol., 38, 035014 (2023). DOI: 10.1088/1361-6641/acb6ad
- S.C. Lee, Y.-B. Jiang, M.T. Durniak, T. Detchprohm, C. Wetzel, S.R.J. Brueck. Cryst. Growth Des., 16, 2183 (2016). DOI: 10.1021/acs.cgd.5b01845
- R. Liu, R. Schaller, Ch.Q. Chen, C. Bayram. ACS Photonics, 5 (3), 955 (2018). DOI: 10.1021/acsphotonics.7b01231
- S.C. Lee, Y.-B. Jiang, M. Durniak, C. Wetzel, S.R.J. Brueck. Nanotechnology, 30, 025711 (2019). DOI: 10.1088/1361-6528/aae9a2
- D.J. As, A. Richter, J. Bush, M. Lubbers, J. Mimkes, K. Lischka. Appl. Phys. Lett., 76, 13 (2000). DOI: 10.1557/PROC-639-G5.9
- V.D.C. Garcia, I.E.O. Hinostroza, A.E. Echavarria. E.L. Luna, A.G. Rodriguez, M.A. Vidal. J. Cryst. Growth, 418, 120 (2015). DOI: 10.1016/j.jcrysgro.2015.02.033
- C.H. Wei, Z.Y. Xie, L.Y. Li, Q.M. Yu, J.H. Edgar, J. Electron. Mater., 29 (3), 317 (2000). DOI: 10.1007/s11664-000-0070-z
- C. Bayram, J.A. Ott, K.-T. Shiu, C.-W. Cheng, Y. Zhu, J. Kim, M. Razeghi, D.K. Sadana. Adv. Funct. Mater., 24 (28), 4492 (2014). DOI: 10.1002/adfm.201304062
- V. Bessolov, E. Konenkova, S. Konenkov, S. Rodin, N. Seredova. J. Phys.: Conf. Ser., 1697 (1), 012099 (2020). DOI: 10.1088/1742-6596/1697/1/012099
- K.H. Plog, O. Brandt, H. Yang, B. Yang, A. Trampert. J. Vac. Sci. Technol., 16, 2229 (1998). DOI: 10.1116/1.590153
- A.S. Bakri, N. Nayan, A.Sh.A. Bakar, M. Tahan, N.A. Raship, W.H.A. Majid, M.K. Ahmad, S.Ch. Fhong, M.Z. Sahdan, M.Y. Ahmad. Intern. J. Nanoelectron. Mater., 13 (1), 199 (2020)
- Y. Zhong, J. Zhang, Sh. Wu, L. Jia, X. Yang, Y. Liu, Y. Zhang, Q. Sun. Fundamental Research, 2, 462 (2021). DOI: 10.1016/j.fmre.2021.11.028
- Th.A. Tabbakh, D. Anandan, M.J. Sheldon, P. Tyagi, A. Alfaifi. Recent Advancements in GaN LED Technology (IntechOpen, 2022). DOI: 10.5772/intechopen.107365
- J.W. Chung, J.-K. Lee, E.L. Piner, T. Palacios. IEEE Electron Device Lett., 30 (10), 1015 (2009). DOI: 10.1109/led.2009.2027914
- H. Furuya, N. Okada, K. Tadatomo. Phys. Stat. Sol. C, 9, 568 (2012). DOI: 10.1002/pssc.201100352
- H. Furuya, Y. Hashimoto, K. Yamane, N. Okada, K. Tadatomo. J. Cryst. Growth, 391, 41 (2014). DOI: 10.1016/j.jcrysgro.2013.12.032
- P. de Mierry, L. Kappei, F. Tendille, P. Vennegues, M. Leroux, J. Zuniga-Perez. Phys. Stat. Sol. B, 253, 105 (2016). DOI: 10.1002/pssb.201552298
- N. Okada, A. Kurisu, K. Murakami, K. Tadatomo. Appl. Phys. Express, 2, 091001 (2009). DOI: 10.1143/apex.2.091001
- F. Tendille, P. De Mierry, P. Vennegues, S. Chenot, M. Teisseire. J. Cryst. Growth, 404, 177 (2014). DOI: 10.1016/j.jcrysgro.2014.07.020
- N. Okada, K. Uchida, S. Miyoshi, K. Tadatomo. Phys. Stat. Sol. A, 209, 469 (2012). DOI: 10.1002/pssa.201100385
- K. Ding, V. Avrutin, N. Izyumskaya, S. Metzner, F. Bertramb J. Christen, U. Ozgur, H. Morkoc. Proc. SPIE, 10532, Gallium Nitride Materials and Devices XIII, 1053208 (2018). DOI: 10.1117/12.2291281
- T. Hikosaka, T. Tanikawa, Y. Honda, M. Yamaguchi, N. Sawaki. Phys. Status Solidi C, 5, 2234 (2008). DOI: 10.1002/pssc.200779236
- T. Murase, T. Tanikawa, Y. Honda, M. Yamaguchi, H. Amano. Phys. Status Solidi C, 8 (7-8), 2160 (2011). DOI: 10.1002/pssc.201000990
- T. Tanikawa, T. Sano, M. Kushimoto, Y. Honda, M. Yamaguchi, H. Amano. Japanese Journal of Applied Physics, 52, 08JC05 (2013). DOI: 10.7567/JJAP.52.08JC05
- M. Kushimoto, T. Tanikawa, Y. Honda, H. Amano. Appl. Phys. Express, 8, 022702 (2015). DOI: 10.7567/APEX.8.022702
- B. Reuters, J. Strate, A. Wille, M. Marx, G. Lukens, L. Heuken, M. Heuken, H. Kalisch, A. Vescan. J. Phys. D: Appl. Phys., 48, 485103 (2015). DOI: 10.1088/0022-3727/48/48/485103
- S. Shen, X. Zhao, X.Yu, C. Zhu, J. Bai, T. Wang. Phys. Status Solidi A, 217, 1900654 (2020). DOI: 10.1002/pssa.201900654
- X. Yu, Y. Hou, S. Shen, J. Bai, Y. Gong, Y. Zhang, T. Wang. Phys. Status Solidi C, 13 (5-6), 190 (2016). DOI: 10.1002/pssc.201510209
- X. Zhao, K. Huang, J. Bruckbauer, S. Shen, C. Zhu, P. Fletcher, P. Feng, Y. Cai, J. Bai, C. Trager-Cowan, R.W. Martin, T. Wang. Scientific Reports, 10, 12650 (2020). DOI: 10.1038/s41598-020-69609-4
- V.N. Bessolov, M.E. Kompan, E.V. Konenkova, V.N. Panteleev, S.N. Rodin, M.P. Shcheglov. Tech. Phys. Lett., 45 (6), 529 (2019). DOI: 10.1134/S106378501906004X
- B. Wannous, P.-M. Coulon, L. Dupre, F. Rol, N. Rochat, J. Zuniga-Perez, P. Vennegues, G. Feuillet, F. Templier. Phys. Status Solidi B, 2200582 (2023). DOI: 10.1002/pssb.202200582
- Y. Wu, Y. Xiao, I. Navid, K. Sun, Y. Malhotra, P. Wang, D. Wang, Y. Xu, A. Pandey, M. Reddeppa, W. Shin, J. Liu, J. Min, Z. Mi. Light Sci. Appl., 11, 294 (2022). DOI: 10.1038/s41377-022-00985-4
- M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H. Gao, Y. Zhou, Sh. Zhang, D. Li, L. Zhang, J. Liu, H.-B. Wang, M. Ikeda, X. Zheng, H. Yang. ACS Photonics, 5 (3), 699 2018). DOI: 10.1021/acsphotonics.7b01215
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.