The possibility of practical application of citrogypsum in engineering
T.B. Nikulicheva1, V.S. Zakhvalinskii1, E.A. Pilyuk1, I.S. Nikulin1, V.V. Vyazmin1, M.V. Mishunin1, M.Yu. Saenko1, O.A. Telpova1, N.I.Alfimova2, T.A. Erina1
1Belgorod National Research University, Belgorod, Russia
2Belgorod State Technology University named after V.G. Shukhov, Belgorod, Russia
Email: zakhvalinskii@bsu.edu.ru

PDF
At present, the problem of using as functional materials such materials that are a by-product of technological processes and accumulate in the form of production waste is becoming more relevant. We have studied two groups of samples. The first group became the basis for a new material for the air humidity sensor, which was obtained from the waste products of citric acid production. Samples of citrogypsum (calcium sulfate dihydrate, i.e. CaSO_4·2H2O) doped with copper sulfate (CuSO_4·5H2O) were prepared. The dependence of the impedance on the relative humidity of samples of three thicknesses was carried out. The frequency dependences of complex resistance and relative permittivity on relative humidity are measured. The second group of samples obtained from citrogypsum was a powder consisting of CaSO_4·2H2O whiskers. Whiskers CaSO_4·2H2O were used to create composites based on epoxy resin. An improvement in the properties of the composite was recorded in the study of tensile and compressive stresses of the samples. This article shows the possibility of practical application of (CaSO_4·2H2O)0.95-(CuSO_4·5H2O)0.05 - as a new air humidity sensor material and improvement of the mechanical properties of the composite based on epoxy resin and CaSO_4·2H2O whiskers. Keywords: composite, citrogypsum, resistive humidity sensor, impedance spectroscopy, whiskers.
  1. X. Tao, Sh. Liao, Y. Wang. EcoMat., 3, e12083 (2021). DOI: 10.1002/eom2.12083
  2. C. Magazzino, M. Mele, N. Schneider, S. Sarkodie. Sci. Total Environ., 755, 142510 (2021). DOI: 10.1016/j.scitotenv.2020.142510
  3. K. Wang, X. Qian, L. Zhang, Y. Li, H. Liu. ACS Appl. Mater. Interfaces, 5 (12), 5825 (2013). DOI: 10.1021/am4014677
  4. E. Traversa. Sensors and Actuators B, 23 (2-3), 135 (1995). DOI: 10.1016/0925-4005(94)01268-m
  5. Y. Li, M.J. Yang. Sensors and Actuators B, 85 (1-2), 73 (2002). DOI: 10.1016/s0925-4005(02)00055-2
  6. B. Adhikari, S. Majumdar. Prog. Polym. Sci., 29 (7), 699 (2004). DOI: 10.1016/j.progpolymsci.2004.03.002
  7. T. Fei, J. Zhao, Zh. Hongran, T. Kai. Sensors and Actuators B: Chemical, 208, 277 (2015). DOI: 10.1016/j.snb.2014.11.044
  8. U. Kang, K.D. Wise. IEEE Transactions on Electron Devices, 47 (4), 702 (2000). DOI: 10.1109/16.830983
  9. V. Prashanth, G. Boby. IEEE Transactions on Instrumentation and Measurement, 64 (4), 902 (2015). DOI: 10.1109/TIM.2014.2361552
  10. F. Hossein-Babaei, P. Shabani. Sensors and Actuators B: Chemical, 205, 143 (2014). DOI: 10.1016/j.snb.2014.08.061
  11. V. Matko, D. Donlagic. IEEE Transactions on Instrumentation and Measurement, 45 (2), 561 (1996). DOI: 10.1109/19.492787
  12. R. Selyanchyn, Sh. Wakamatsu, K. Hayashi, S.-W. Lee. Sensors, 15 (8), 18834 (2015). DOI: 10.3390/s150818834
  13. D. Bridgeman, J. Corral, A. Quach, X. Xian, E. Forzani. Langmuir, 30 (35), 10785 (2014). DOI: 10.1021/la502593g
  14. N. Radouane, A. Maaroufi. Fiber Inclusions-Based Epoxy Composites and Their Applications (E-Book), In S.J.S. Chelladurai, R. Arthanari, M.R. Meera (editors). Epoxy-Based Composites (E-Book), 2022, p. 126, ISBN 978-1-80355-161-6. DOI: 10.5772/intechopen.104118
  15. H. Abdellaoui, M. Raji, R. Bouhfid, A. el kacem Qaiss. Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites (Elsevier Ltd., 2019), p. 29-49. DOI: 10.1016/b978-0-08-102293-1.00002-4
  16. T. Sirimahasal, Y. Kalhong, L. Simasatitkul, S. Pranee, S. Seeyangnok. Key Engineering Mater., 803, 351 (2019). DOI: 10.4028/www.scientific.net/KEM.803.351
  17. N.I. Alfimova, S.Yu. Pirieva, M.Yu. Elistratkin, I.S. Nikulin, A.A. Titenko. IOP Conf. Ser.: Mater. Sci. Eng., 945, 012057 (2020). DOI: 10.1088/1757-899X/945/1/012057
  18. T.B. Nikulicheva, I.S. Nikulin, E.A. Pilyuk, V.S. Voropaev, N.I. Alfimova, V.B. Nikulichev, M.Yu. Saenko. IOP Conf. Ser.: Earth Environ. Sci., 845, 012152 (2021). DOI: 10.1088/1755-1315/845/1/012152
  19. R.J. Hand. Br. Ceram. Trans., 96 (3), 116 (1997). ISSN: 0967-9782
  20. E. Barsoukov, J.R. Macdonald (eds.). Impedance Spectroscopy. : Theory, Experiment, and Applications (John Wiley \& Sons, Inc., 2018), DOI: 10.1002/9781119381860
  21. D. Rajak, D. Pagar, P. Menezes, E. Linul. Polymers, 11 (10), 1667 (2019). DOI: 10.3390/polym11101667

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru