Influence of Li ions on memristor properties of capacitor structures based on nanocomposites (Co40Fe40B20)x(LiNbO3)100-x
Sitnikov A. V.
1,2, Kalinin Yu. E.
1, Babkina I. V.
1, Nikonov A. E.
1, Kopytin M. N.
1, Yanchenko L. I.
1, Shakurov A. R.
11Voronezh State Technical University, Voronezh, Russia
2National Research Center “Kurchatov Institute”, Moscow, Russia
Email: sitnikov04@mail.ru, kalinin48@mail.ru, ivbabkina@mail.ru, nikonov.sasha1994@gmail.com, michaelkopitin@mail.ru, lyanchenko74@yandex.ru, Aleks.shakurov@mail.ru
The paper reveals the influence of Li, B and the composition of metal contacts on the processes of resistive switching in memristive structures M/NC/D/M. After field exposure in structures Cu/(Co50Fe50)x(LiNbO3)100-x/s-LiNbO3/Cu/sitall, Cu/(Co50Fe50)x(LiNbO3)100-x/d-LiNbO3/Cu/sitall and Cu/(Co40Fe40B20)x(SiO2)100-x/d LiNbO3/Cu/sitall at x < 13 was detected a residual voltage (up to 16 mV) due to the electromigration of Li ions, that leading to a "reversible" type of VAC hysteresis and instability of the time dependencies of induced resistive states. In the structures of Cu/(Co40Fe40B20)x(LiNbO3)100-x/s-LiNbO3/Cu/sitall, Cr/Cu/Cr/(Co40Fe40B20)x(LiNbO3)100-x/s-LiNbO3/Cr/Cu/Cr/sitall containing B, the residual voltage is reduced by formation of chemical compounds B with percolated Li atoms. When limiting the electromigration of Li ions, the main mechanism of resistive switching is the processes of electromigration of oxygen vacancies in the dielectric oxide layer. Suppression of residual voltage in the Cr/Cu/Cr/(Co50Fe50)x(LiNbO3)100-x/s-LiNbO3/Cr/Cu/Cr/sitall structure due to the introduction of a Cr buffer layer that does not dissolve Li leads to the absence of bipolar resistive switching in these structures. Keywords: Resistive switching, memristive effect, nanocomposite, residual voltage, thin-films structures.
- C. Li, M. Hu, Yu. Li, H. Jiang, N. Ge, E. Montgomery, Jm. Zhang, Wh. Song, N. Davila, C. Graves, Zh. Li, J. Strachan, P. Lin, Z. Wang, M. Barnell, Q. Wu, R. Williams, J. Yang, Qf. Xia. Nature Electr., 1, 52 (2018). DOI: 10.1038/s41928-017-0002-z
- I.N. Antonov, A.I. Belov, A.N. Mikhaylov, O.A. Morozov, P.E. Ovchinnikov. J. Commun. Technol. Electron., 63 (8), 950 (2018). DOI: 10.1134/S106422691808003X
- A. Serb, J. Bill, A. Khiat, R. Berdan, R. Legenstein, T. Prodromakis. Nat. Commun., 7, 12611 (2016) DOI: 10.1038/ncomms12611
- V.A. Demin, V.V. Erokhin, A.V. Emelyanov, S. Battistoni, G. Baldi, S. Iannotta, P.K. Kashkarov, M.V. Kovalchuk. Organic Electron., 25, 16 (2015). DOI: 10.1016/j.orgel.2015.06.015
- A.V. Emelyanov, D.A. Lapkin, V.A. Demin, V.V. Erokhin, S. Battistoni, G. Baldi, A. Dimonte, A.N. Korovin, S. Iannotta, P.K. Kashkarov, M.V. Kovalchuk. AIP Advances, 6, 111301 (2016). DOI: 10.1063/1.4966257
- K.E. Nikirui, A.V. Yemelyanov, V.V. Rylkov, A.V. Sitnikov, V.A. Demin. Pisma v ZhTF, 45 (8), 19 (2019) (in Russian)
- D. Ielmini. Semicond. Sci. Technol., 31, 063002 (2016). DOI: 10.1088/0268-1242/31/6/063002
- J.S. Lee, S. Lee, T.W. Noh. Appl. Phys. Rev., 2 (3), 031303 (2015). DOI: 10.1063/1.4929512
- J.J. Yang, D.B. Strukov, D.R. Stewart. Nature Nanotech., 8, 13 (2013). DOI: 10.1038/nnano.2012.240
- V.V. Rylkov, S.N. Nikolaev, V.A. Demin, A.V. Emelyanov, A.V. Sitnikov, K.E. Nikiruy, V.A. Levanov, M.Yu. Presnyakov, A.N. Taldenkov, A.L. Vasiliev, K.Yu. Chernoglazov, A.S. Vedeneev, Yu.E. Kalinin, A.B. Granovsky, V.V. Tugushev, A.S. Bugaev. J. Exp. Theor. Phys., 126, 353 (2018). DOI: 10.1134/S1063776118020152
- V.A. Levanov, A.V. Emelyanov, V.A. Demin, K.E. Nikirui, A.V. Sitnikov, S.N. Nikolaev, A.S. Vedeneev, Yu.E. Kalinin, V.V. Rylkov. J. Commun. Technol. Electron., 63 (5), 491 (2018). DOI: 10.1134/S1064226918050078
- K.E. Nikiruy, A.V. Emelyanov, V.A. Demin, V.V. Rylkov, A.V. Sitnikov, P.K. Kashkarov. Tech. Phys. Lett., 44, 416 (2018). DOI: 10.1134/S106378501805022X
- V.V. Rylkov, A.V. Sitnikov, S.N. Nikolaev, V.A. Demin, A.N. Taldenkov, M.Yu. Presnyakov, A.V. Emelyanov, A.L. Vasiliev, Yu.E. Kalinin, A.S. Bugaev, V.V. Tugushev, A.B. Granovsky. JMMM, 459, 197 (2018). DOI: 10.1016/j.jmmm.2017.11.022
- V.V. Rylkov, S.N. Nikolaev, K.Y. Chernoglazov, V.A. Demin, M.Yu. Presnyakov, A.L. Vasiliev, V.V. Tugushev, A.B. Granovsky, A.V. Sitnikov, Yu.E. Kalinin, N.S. Perov, A.S. Vedeneev. Phys. Rev. B, 95 (14), 144202 (2017). DOI: 10.1103/PhysRevB.95.144202
- A.V. Sitnikov, I.V. Babkina, Y.E. Kalinin, A.E. Nikonov, M.N. Kopytin, A.R. Shakurov, O.I. Remizova, L.I. Yanchenko. ZhTF, 92 (9), 1382 (2022) (in Russian). DOI: 10.21883/JTF.2022.09.52930.94-22
- Yu.E. Kalinin, A.N. Remizov, A.V. Sitnikov. Phys. Solid State, 46 (11), 2146 (2004). DOI: 10.1134/1.1825563
- N. Domracheva, M. Caporali, E. Rentschler. Novel Magnetic Nanostructures: Unique Properties and Applications (Elsevier, 2018)
- I.A. Kedrinsky, V.G. Yakovlev. Li-ion accumulators (Platan, Krasnoyarsk, 2002)
- J. Rahn, E. Huger, L. Dorrer, B. Ruprecht, P. Heitjans, H. Schmidt. Z. Phys. Chem., 226, 439 (2012). DOI: 10.1524/zpch.2012.0214
- N.P. Lyakisheva. Diagrammy sostoyaniya dvoynykh metallicheskikh sistem (Mashinostroenie, M., 1997)
- R. Rupp, B. Caerts, A. Vantomme, J. Fransaer, A. Vlad. J. Phys. Chem. Lett., 10, 5206 (2019). DOI: 10.1021/acs.jpclett.9b02014
- D.M. Gruen, A.R. Krauss, S. Susman, M. Venugopalan, M. Ron. J. Vac. Sci. Technol., 1 (2), 924 (1983). DOI: 10.1116/1.572152
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.