Influence of Li ions on memristor properties of capacitor structures based on nanocomposites (Co40Fe40B20)x(LiNbO3)100-x
Sitnikov A. V. 1,2, Kalinin Yu. E. 1, Babkina I. V. 1, Nikonov A. E. 1, Kopytin M. N. 1, Yanchenko L. I. 1, Shakurov A. R. 1
1Voronezh State Technical University, Voronezh, Russia
2National Research Center “Kurchatov Institute”, Moscow, Russia
Email: sitnikov04@mail.ru, kalinin48@mail.ru, ivbabkina@mail.ru, nikonov.sasha1994@gmail.com, michaelkopitin@mail.ru, lyanchenko74@yandex.ru, Aleks.shakurov@mail.ru

PDF
The paper reveals the influence of Li, B and the composition of metal contacts on the processes of resistive switching in memristive structures M/NC/D/M. After field exposure in structures Cu/(Co50Fe50)x(LiNbO3)100-x/s-LiNbO3/Cu/sitall, Cu/(Co50Fe50)x(LiNbO3)100-x/d-LiNbO3/Cu/sitall and Cu/(Co40Fe40B20)x(SiO2)100-x/d LiNbO3/Cu/sitall at x < 13 was detected a residual voltage (up to 16 mV) due to the electromigration of Li ions, that leading to a "reversible" type of VAC hysteresis and instability of the time dependencies of induced resistive states. In the structures of Cu/(Co40Fe40B20)x(LiNbO3)100-x/s-LiNbO3/Cu/sitall, Cr/Cu/Cr/(Co40Fe40B20)x(LiNbO3)100-x/s-LiNbO3/Cr/Cu/Cr/sitall containing B, the residual voltage is reduced by formation of chemical compounds B with percolated Li atoms. When limiting the electromigration of Li ions, the main mechanism of resistive switching is the processes of electromigration of oxygen vacancies in the dielectric oxide layer. Suppression of residual voltage in the Cr/Cu/Cr/(Co50Fe50)x(LiNbO3)100-x/s-LiNbO3/Cr/Cu/Cr/sitall structure due to the introduction of a Cr buffer layer that does not dissolve Li leads to the absence of bipolar resistive switching in these structures. Keywords: Resistive switching, memristive effect, nanocomposite, residual voltage, thin-films structures.
  1. C. Li, M. Hu, Yu. Li, H. Jiang, N. Ge, E. Montgomery, Jm. Zhang, Wh. Song, N. Davila, C. Graves, Zh. Li, J. Strachan, P. Lin, Z. Wang, M. Barnell, Q. Wu, R. Williams, J. Yang, Qf. Xia. Nature Electr., 1, 52 (2018). DOI: 10.1038/s41928-017-0002-z
  2. I.N. Antonov, A.I. Belov, A.N. Mikhaylov, O.A. Morozov, P.E. Ovchinnikov. J. Commun. Technol. Electron., 63 (8), 950 (2018). DOI: 10.1134/S106422691808003X
  3. A. Serb, J. Bill, A. Khiat, R. Berdan, R. Legenstein, T. Prodromakis. Nat. Commun., 7, 12611 (2016) DOI: 10.1038/ncomms12611
  4. V.A. Demin, V.V. Erokhin, A.V. Emelyanov, S. Battistoni, G. Baldi, S. Iannotta, P.K. Kashkarov, M.V. Kovalchuk. Organic Electron., 25, 16 (2015). DOI: 10.1016/j.orgel.2015.06.015
  5. A.V. Emelyanov, D.A. Lapkin, V.A. Demin, V.V. Erokhin, S. Battistoni, G. Baldi, A. Dimonte, A.N. Korovin, S. Iannotta, P.K. Kashkarov, M.V. Kovalchuk. AIP Advances, 6, 111301 (2016). DOI: 10.1063/1.4966257
  6. K.E. Nikirui, A.V. Yemelyanov, V.V. Rylkov, A.V. Sitnikov, V.A. Demin. Pisma v ZhTF, 45 (8), 19 (2019) (in Russian)
  7. D. Ielmini. Semicond. Sci. Technol., 31, 063002 (2016). DOI: 10.1088/0268-1242/31/6/063002
  8. J.S. Lee, S. Lee, T.W. Noh. Appl. Phys. Rev., 2 (3), 031303 (2015). DOI: 10.1063/1.4929512
  9. J.J. Yang, D.B. Strukov, D.R. Stewart. Nature Nanotech., 8, 13 (2013). DOI: 10.1038/nnano.2012.240
  10. V.V. Rylkov, S.N. Nikolaev, V.A. Demin, A.V. Emelyanov, A.V. Sitnikov, K.E. Nikiruy, V.A. Levanov, M.Yu. Presnyakov, A.N. Taldenkov, A.L. Vasiliev, K.Yu. Chernoglazov, A.S. Vedeneev, Yu.E. Kalinin, A.B. Granovsky, V.V. Tugushev, A.S. Bugaev. J. Exp. Theor. Phys., 126, 353 (2018). DOI: 10.1134/S1063776118020152
  11. V.A. Levanov, A.V. Emelyanov, V.A. Demin, K.E. Nikirui, A.V. Sitnikov, S.N. Nikolaev, A.S. Vedeneev, Yu.E. Kalinin, V.V. Rylkov. J. Commun. Technol. Electron., 63 (5), 491 (2018). DOI: 10.1134/S1064226918050078
  12. K.E. Nikiruy, A.V. Emelyanov, V.A. Demin, V.V. Rylkov, A.V. Sitnikov, P.K. Kashkarov. Tech. Phys. Lett., 44, 416 (2018). DOI: 10.1134/S106378501805022X
  13. V.V. Rylkov, A.V. Sitnikov, S.N. Nikolaev, V.A. Demin, A.N. Taldenkov, M.Yu. Presnyakov, A.V. Emelyanov, A.L. Vasiliev, Yu.E. Kalinin, A.S. Bugaev, V.V. Tugushev, A.B. Granovsky. JMMM, 459, 197 (2018). DOI: 10.1016/j.jmmm.2017.11.022
  14. V.V. Rylkov, S.N. Nikolaev, K.Y. Chernoglazov, V.A. Demin, M.Yu. Presnyakov, A.L. Vasiliev, V.V. Tugushev, A.B. Granovsky, A.V. Sitnikov, Yu.E. Kalinin, N.S. Perov, A.S. Vedeneev. Phys. Rev. B, 95 (14), 144202 (2017). DOI: 10.1103/PhysRevB.95.144202
  15. A.V. Sitnikov, I.V. Babkina, Y.E. Kalinin, A.E. Nikonov, M.N. Kopytin, A.R. Shakurov, O.I. Remizova, L.I. Yanchenko. ZhTF, 92 (9), 1382 (2022) (in Russian). DOI: 10.21883/JTF.2022.09.52930.94-22
  16. Yu.E. Kalinin, A.N. Remizov, A.V. Sitnikov. Phys. Solid State, 46 (11), 2146 (2004). DOI: 10.1134/1.1825563
  17. N. Domracheva, M. Caporali, E. Rentschler. Novel Magnetic Nanostructures: Unique Properties and Applications (Elsevier, 2018)
  18. I.A. Kedrinsky, V.G. Yakovlev. Li-ion accumulators (Platan, Krasnoyarsk, 2002)
  19. J. Rahn, E. Huger, L. Dorrer, B. Ruprecht, P. Heitjans, H. Schmidt. Z. Phys. Chem., 226, 439 (2012). DOI: 10.1524/zpch.2012.0214
  20. N.P. Lyakisheva. Diagrammy sostoyaniya dvoynykh metallicheskikh sistem (Mashinostroenie, M., 1997)
  21. R. Rupp, B. Caerts, A. Vantomme, J. Fransaer, A. Vlad. J. Phys. Chem. Lett., 10, 5206 (2019). DOI: 10.1021/acs.jpclett.9b02014
  22. D.M. Gruen, A.R. Krauss, S. Susman, M. Venugopalan, M. Ron. J. Vac. Sci. Technol., 1 (2), 924 (1983). DOI: 10.1116/1.572152

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru