Kiseev V.M.
1, Sazhin O. V.
11Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russia
Email: Valery.Kiseev@urfu.ru, oleg.sazhin@urfu.ru
Studies of the heat transfer coefficient and thermal resistance for a loop thermosyphon with a high heat flux density in the transport zone, as well as studies of the critical heat flux using a traditional thermosyphon, have been carried out. Measurements were carried out for pure water, water with porous coatings of the vaporization surface and nanofluid, all other things being equal, using technically polished copper surfaces as the boiling surface. The mechanism of formation of nanorelief on the vapor-generating surfaces of thermosyphons and an increase in the heat transfer coefficient and critical heat flux due to this is revealed. A dynamic model of the formation of this nanorelief is proposed. Accelerated and long-term life-test of a loop thermosyphon filled with water with iron oxide and copper oxide nanoparticles were carried out, and its stable performance was shown. Keywords: two-phase heat transfer devices, heat transfer coefficient, critical heat flux, nanofluid, thermosyphon, heat carrier, thermal resistance.
- S.U. Choi, J.A. Eastman. Enhancing Thermal Conductivity of Fluids With Nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab.(ANL), Argonne, IL (USA, 1995)
- S.K. Das, N. Putra, P. Thiesen, W. Roetzel. J. Heat Transfer, 125 (4), 567 (2003)
- J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson. Appl. Phys. Lett., 78 (6), 718 (2001)
- D. Wen, Y. Ding. Intern. J. Heat and Mass Transfer, 47 (24), 5181 (2004)
- Y. Xuan, Q. Li. Intern. J. Heat and Fuid Flow, 21 (1), 58 (2000)
- A. Asadi, F. Pourfattah, I.M. Szilagyi, M. Afrand, G. Zy a, H.S. Ahn, O. Mahian. Ultrasonics Sonochemistry, 58, 104701 (2019)
- S.K. Das, N. Putra, W. Roetzel. International J. Heat and Mass Transfer, 46 (5), 851 (2003)
- S. Khandekar, Y.M. Joshi, B. Mehta. Intern. J. Thermal Sci., 47 (6), 659 (2008)
- Y.H. Lin, S.W. Kang, H.L. Chen. Appl. Thermal Eng., 28 (11-12), 1312 (2008)
- S.W. Kang, W.C. Wei, S.H. Tsai, C.C. Huang. Appl. Thermal Eng., 29 (5-6), 973 (2009)
- K.H. Do, S.P. Jang. Intern. J. Heat and Mass Transfer, 53 (9-10), 2183 (2010)
- Z.H. Liu, X.F. Yang, G.L. Guo. Intern. J. Heat and Mass Transfer, 53 (9-10), 1914 (2010)
- G. Huminic, A. Huminic, I. Morjan, F. Dumitrache. Intern. J. Heat and Mass Transfer, 54 (1-3), 656 (2011)
- V. Kiseev, O. Sazhin. Intern. J. Heat and Mass Transfer, 132, 557 (2019)
- A. Kamyar, K.S. Ong, R. Saidur. Intern. J. Heat and Mass Transfer, 65, 610 (2013)
- H. Shabgard, B. Xiao. Intern. J. Heat and Mass Transfer, 70, 91 (2014)
- K. Cacua, R. Buitrago-Sierra, E. Pabon, A. Gallego, C. Zapata, B. Herrera. Intern. J. Thermal Sci., 153, 106347 (2020)
- L.A. Shuoman, M. Abdelaziz, S. Abdel-Samad. Heat and Mass Transfer, 57, 1275 (2021)
- D.Y. Aydi n, E. Ciftci, M. Guru, A. Sozen. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 43 (12), 1524 (2020)
- V.B.J.A.G. Bhuibhar, P.P. Pande. Intern. J. Eng. Sci. Res. Technol., 7 (3), 51 (2018)
- H. Ghorabaee, M.R.S. Emami, N. Karimi, F. Moosakazemi. Powder Technol., 394, 250 (2021)
- D.A. Labuntsov. Thermal Engrg., 19, 21 (1972).
- W.M. Rohsenow. J. Fluids Eng., 74 (6), 969 (1952)
- A. Sathyabhama, R.N. Hegde. Thermal Sci., 14 (2), 353 (2010)
- A.G. Belonogov, V.M. Kiseev. AICHE Symposium Ser., 91 (306), 333 (1995).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.