Development of an intelligent remote control system for heart rate biomonitoring
Danishevsky N. S.1, Budanov D. O.1, Zaitceva A. Yu.2
1Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
2Institute for Analytical Instrumentation of the Russian Academy of Sciences, Saint Petersburg, Russia
Email: anna@da-24.ru
The paper proposes a new method for remote biomonitoring based on recording a pulse curve. A relevant algorithm was developed, and video images of biological tissues were processed by machine learning methods for the subsequent time-frequency analysis of the received signal having the goal to determine physiological parameters. The model training was accomplished. Keywords: remote photoplethysmography, computer vision, heart rate, biomonitoring.
- A. Dasari, S.K.A. Prakash, L.A. Jeni, C.S. Tucker, Digital Med., 4 (4), 91 (2021). DOI: 10.1038/s41746-021-00462-z
- S. Liu, Y. Wang, Q. Yu, H. Liu, Z. Peng, IEEE Access, 10, 129116 (2022). DOI: 10.1109/ACCESS.2022.3228331
- S. Yang, P. Luo, C.C. Loy, X. Tang, in 2016 IEEE Conf. on computer vision and pattern recognition (IEEE, 2016), p. 5525. DOI: 10.1109/CVPR.2016.596
- A. Nibali, Z. He, S. Morgan, L. Prendergast, Numerical coordinate regression with convolutional neural networks (2018) [Electronic source]. arXiv:1801.07372v2
- M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.C. Chen, in 2018 IEEE/CVF Conf. on computer vision and pattern recognition (IEEE, 2018), p. 4510. DOI: 10.1109/CVPR.2018.00474
- C. Sagonas, E. Antonakos, G. Tzimiropoulos, S. Zafeiriou, M. Pantic, Image Vis. Comput., 47, 3 (2016). DOI: 10.1016/j.imavis.2016.01.002
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.