Polarization interaction of a Rydberg electron with an atomic core in the Thomas--Fermi--Patil model
Kornev A. S. 1
1Voronezh State University, Voronezh, Russia
Email: a-kornev@yandex.ru

PDF
Using the Thomas-Fermi-Patil method, a model potential of a Rydberg electron moving in the field of an atomic core with closed shells is obtained. Quantum defects of Rydberg states are calculated in the WKB approximation. The necessity of jointly taking into account the screened and polarization components of the model potential is demonstrated. The values of the cutoff" radius in the formula for the polarization potential for a Rydberg electron are found. The limits of applicability of the Thomas-Fermi-Patil method for calculating quantum defects have been clarified: the cores of alkali atoms K, Rb, Cs from group 1 and similar singly charged alkaline earth ions Ca+, Sr+, Ba+ from group 2 of the Periodic table. Here, significantly penetrating s, p and d states of a Rydberg electron have the quantum defect exceeding unity. The proposed approach can be used in testing the accuracy of various density functionals and model potentials. Keywords: penetrating Rydberg states, quantum defects, polarization interaction, Thomas-Fermi-Patil model.
  1. T.F. Gallagher. Rydberg atoms. Cambridge Monographs on Atomic, Molecular and Chemical Physics. (Cambridge University Press, Cambridge, 1994). URL: https://www.cambridge.org/core/books/rydberg-atoms/B610BDE54694936F496F59F326C1A81B
  2. N. vSibalic, C.S. Adams. Rydberg physics, ser. 2399-2891. (IOP Publishing, Bristol, 2018). DOI: 10.1088/978-0-7503-1635-4
  3. N.D. Guise, J.N. Tan, S.M. Brewer, C.F. Fischer, P. Jonsson. Phys. Rev. A, 89 (4), 040502 (2014). DOI: 10.1103/PhysRevA.89.040502
  4. Y.N. Gnedin, A.A. Mihajlov, Lj.M. Ignjatovic, N.M. Sakan, V.A. Sreckovic, M.Yu. Zakharov, N.N. Bezuglov, A.N. Klycharev. New Astron. Rev., 53 (7), 259 (2009). DOI: 10.1016/j.newar.2009.07.003
  5. J. Neukammer, H. Rinneberg, U. Majewski. Phys. Rev. A, 30 (2), 1142 (1984). DOI: 10.1103/PhysRevA.30.1142
  6. G. Vitrant, J.M. Raimond, M. Gross, S. Haroche. J. Phys. B: At. Mol. Phys., 15 (2), L49 (1982). DOI: 10.1088/0022-3700/15/2/004
  7. R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Low, L. Santos, T. Pfau. Phys. Rev. Lett., 99 (16), 163601 (2007). DOI: 10.1103/PhysRevLett.99.163601
  8. N. Duarte Gomes, B. da Fonseca Magnani, J.D. Massayuki Kondo, L.G. Marcassa. Atoms, 10 (2), 58 (2022). DOI: 10.3390/atoms10020058
  9. J.D. Pritchard, D. Maxwell, A. Gauguet, K.J. Weatherill, M.P.A. Jones, C.S. Adams. Phys. Rev. Lett., 105 (19), 193603 (2010). DOI: 10.1103/PhysRevLett.105.193603
  10. O. Firstenberg , T. Peyronel, Q.-Y. Liang, A.V. Gorshkov, M.D. Lukin, V. Vuletic. Nature, 502 (10), 71 (2013). DOI: 10.1038/nature12512
  11. E.A. Yakshina, D.B. Tretyakov, I.I. Beterov, V.M. Entin, C. Andreeva, A. Cinins, A. Markovski, Z. Iftikhar, A. Ekers, I.I. Ryabtsev. Phys. Rev. A, 94 (4), 043417 (2016). DOI: 10.1103/PhysRevA.94.043417
  12. A. Mazalam, K. Michulis, I.I. Beterov, N.N. Bezuglov, A.N. Klyucharev, A. Ekers. Opt. Spectr., 127 (3), 375 (2019). DOI: 10.1134/S0030400X19090200
  13. S. Saakyan, N. Morozov, V. Sautenkov, B.B. Zelener. Atoms, 11 (4), 73 (2023). DOI: 10.3390/atoms11040073
  14. .V. Taichenachev, V.I. Yudin, S.N. Bagayev. Phys. -- Uspekhi, 59 (2), 184 (2016). DOI: 10.3367/UFNe.0186.201602j.0193
  15. .F. Stelmashenko, O.A. Klezovich, V.N. Baryshev, V.A. Tishchenko, I.Yu. Blinov, V.G. Palchikov, V.D. Ovsyannikov. Opt. Spectrosc., 128 (8), 1067 (2020). DOI: 10.1134/S0030400X20080366
  16. W. Clark, C.H. Greene. Phys. Rev. A, 56 (1), 403 (1997). DOI: 10.1103/PhysRevA.56.403
  17. A.I. Al-Sharif, R. Resta, C.J. Umrigar. Phys. Rev. A, 57 (4), 2466 (1998). DOI: 10.1103/PhysRevA.57.2466
  18. C.B. Xu, X.P. Xie, R.C. Zhao, W. Sun, P. Xue, Z.P. Zhong, W. Huang, X.Y. Xu. J. Phys. B: At. Mol. Opt. Phys., 31 (24), 5355 (1998). DOI: 10.1088/0953-4075/31/24/016
  19. N. Zheng, D. Ma, R. Yang, T. Zhou, T. Wang, S. Han. J. Chem. Phys., 113 (5), 1681 (2000). DOI: 10.1063/1.481969
  20. J. Migdalek. At. Data Nucl. Data Tables, 135--136, 101355 (2020). DOI: 10.1016/j.adt.2020.101355
  21. V.V. Kuzenov, S.V. Ryzhkov, V.V. Shumaev. Prob. Atomic Sci. Technol., 95, 97 (2015)
  22. V.V. Kuzenov, S.V. Ryzhkov, V.V. Shumaev. Prob. Atomic Sci. Technol., 98, 53 (2015)
  23. P. Gombas. Die statistische theorie des atoms und ihre anwendungen. (Springer-Verlag, Luxemburg, 1949), sect. 24
  24. D.A. Kirzhnits, Y.E. Lozovik, G.V. Shpatakovskaya. Sov. Phys. -- Uspekhi, 18 (9), 649 (1975). DOI: 10.1070/PU1975v018n09ABEH005199
  25. G.V. Shpatakovskaya. Phys. -- Uspekhi, 55 (5), 429 (2012). DOI: 10.3367/UFNe.0182.201205a.0457
  26. S. Seriy. OJMSi, 3 (3), 96 (2015). DOI: 10.4236/ojmsi.2015.33010
  27. S.H. Patil. J. Phys. B: At. Mol. Opt. Phys., 22 (13), 2051 (1989). DOI: 10.1088/0953-4075/22/13/009
  28. S.H. Patil. At. Data Nucl. Data Tables, 71 (1), 41 (1999). DOI: 10.1006/adnd.1998.0799
  29. L. Neale, M. Wilson. Phys. Rev. A, 51 (5), 4272 (1995). DOI: 10.1103/PhysRevA.51.4272
  30. Z. Xianzhou, S. Jinfeng, L. Yufang. J. Phys. B: At. Mol. Opt. Phys., 25 (8), 1893 (1992). DOI: 10.1088/0953-4075/25/8/021
  31. A.S. Kornev, B.A. Zon. J. Phys. B: At. Mol. Opt. Phys., 36 (19), 4027 (2003). DOI: 10.1088/0953-4075/36/19/011
  32. A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team. NIST Atomic Spectra Database (ver. 5.10) [Electronic resource]. URL: https://physics.nist.gov/asd
  33. I.S. Madjarov, J.P. Covey, A.L. Shaw, J. Choi, A. Kale, A. Cooper, H. Pichler, V. Schkolnik, J.R. Williams, M. Endres. Nat. Phys., 16, 857 (2020). DOI: 10.1038/s41567-020-0903-z
  34. P.G. Burke. Potential scattering in atomic physics (Springer US, New York, 2012), ch. 6, eq. 176
  35. L.H. Thomas. Proc. Camb. Phil. Soc., 23, 542 (1926). DOI: 10.1017/S0305004100011683
  36. E. Fermi. Z. Phys., 48, 73 (1928)
  37. P.A.M. Dirac. Proc. Camb. Phil. Soc., 26, 376 (1930). DOI:10.1017/S0305004100016108
  38. J. Schwinger. Phys. Rev. A, 24 (5), 2353 (1981). DOI: 10.1103/PhysRevA.24.2353
  39. H.J. Brudner, S. Borowitz. Phys. Rev., 120 (6), 2053 (1960). DOI: 10.1103/PhysRev.120.2053
  40. E. Fermi, E. Amaldi. Mem. Accad. d'Italia, 6, 119 (1934)
  41. I.I. Beterov, I.I. Ryabtsev, D.B. Tretyakov, V.M. Entin. Phys. Rev. A, 79 (5), 052504 (2009). DOI: 10.1103/PhysRevA.79.052504
  42. L.D. Landau, E.M. Lifshitz. Quantum mechanics, nonrelativistic theory (Pergamon, Oxford, 1991), sect. 49
  43. L.D. Landau, E.M. Lifshitz. Mechanics (Elsevier Science, Amsterdam, 1982), sect. 15
  44. V.V. Kazakov, V.G. Kazakov, O.I. Meshkov, A.S. Yatsenko. Phys. Scr., 92, 105002 (2017). DOI: 10.1088/1402-4896/aa822e
  45. E. Biemont, P. Quinet, V. Van Renterghem. J. Phys. B: At. Mol. Opt. Phys., 31 (24), 5301 (1998). DOI: 10.1088/0953-4075/31/24/012
  46. A.S. Kornev, I.M. Semiletov, B.A. Zon. J. Phys. B: At. Mol. Opt. Phys., 47 (20), 204026 (2014). DOI: 10.1088/0953-4075/47/20/204026
  47. A.S. McNeill, K.A. Peterson, D.A. Dixon. J. Chem. Phys., 153 (17), 174304 (2020). DOI: 10.1063/5.0026876
  48. J. Mitroy, M.S. Safronova, C.W. Clark. J. Phys. B: At. Mol. Opt. Phys., 43 (20), 202001 (2010). DOI: 10.1088/0953-4075/43/20/202001
  49. P. Neogrady, V. Kello, M. Urban, A. Sadlej. Theor. Chim. Acta, 93, 101 (1996). DOI: 10.1007/BF01113551
  50. W.R. Johnson, K.T. Cheng. Phys. Rev. A, 53 (3), 1375 (1996). DOI: 10.1103/PhysRevA.53.1375
  51. A.K. Bhatia, R.J. Drachman. Can. J. Phys., 75 (1), 11 (1997). DOI: 10.1139/p96-132
  52. U. Opik. Proc. Phys. Soc., 92 (3), 566 (1967). DOI: 10.1088/0370-1328/92/3/308
  53. W. Johnson, D. Kolb, K.-N. Huang. At. Data Nucl. Data Tables, 28 (2), 333 (1983). DOI: 10.1016/0092-640X(83)90020-7
  54. R.D. Shannon. Acta Cryst. A, 32 (5), 751 (1976). DOI: 10.1107/S0567739476001551
  55. R. Grimes, N. Kuganathan, C. Galvin, M. Jackson, A. Hodgson, A. Kenich, T.Y. Ren. Database of Ionic Radii [Electronic source]. URL: http://abulafia.mt.ic.ac.uk/shannon/
  56. M.G. Medvedev, I.S. Bushmarinov, J. Sun, J.P. Perdew, K.A. Lyssenko. Science, 355 (6320), 49 (2017). DOI: 10.1126/science.aah5975
  57. A.S. Kornev, K.I. Suvorov, V.E. Chernov, I.V. Kopytin, B.A. Zon. Opt. Spectr., 127 (5), 798 (2019). DOI: 10.1134/S0030400X1911016X.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru