Polarization interaction of a Rydberg electron with an atomic core in the Thomas--Fermi--Patil model
Kornev A. S.
1
1Voronezh State University, Voronezh, Russia
Email: a-kornev@yandex.ru
Using the Thomas-Fermi-Patil method, a model potential of a Rydberg electron moving in the field of an atomic core with closed shells is obtained. Quantum defects of Rydberg states are calculated in the WKB approximation. The necessity of jointly taking into account the screened and polarization components of the model potential is demonstrated. The values of the cutoff" radius in the formula for the polarization potential for a Rydberg electron are found. The limits of applicability of the Thomas-Fermi-Patil method for calculating quantum defects have been clarified: the cores of alkali atoms K, Rb, Cs from group 1 and similar singly charged alkaline earth ions Ca+, Sr+, Ba+ from group 2 of the Periodic table. Here, significantly penetrating s, p and d states of a Rydberg electron have the quantum defect exceeding unity. The proposed approach can be used in testing the accuracy of various density functionals and model potentials. Keywords: penetrating Rydberg states, quantum defects, polarization interaction, Thomas-Fermi-Patil model.
- T.F. Gallagher. Rydberg atoms. Cambridge Monographs on Atomic, Molecular and Chemical Physics. (Cambridge University Press, Cambridge, 1994). URL: https://www.cambridge.org/core/books/rydberg-atoms/B610BDE54694936F496F59F326C1A81B
- N. vSibalic, C.S. Adams. Rydberg physics, ser. 2399-2891. (IOP Publishing, Bristol, 2018). DOI: 10.1088/978-0-7503-1635-4
- N.D. Guise, J.N. Tan, S.M. Brewer, C.F. Fischer, P. Jonsson. Phys. Rev. A, 89 (4), 040502 (2014). DOI: 10.1103/PhysRevA.89.040502
- Y.N. Gnedin, A.A. Mihajlov, Lj.M. Ignjatovic, N.M. Sakan, V.A. Sreckovic, M.Yu. Zakharov, N.N. Bezuglov, A.N. Klycharev. New Astron. Rev., 53 (7), 259 (2009). DOI: 10.1016/j.newar.2009.07.003
- J. Neukammer, H. Rinneberg, U. Majewski. Phys. Rev. A, 30 (2), 1142 (1984). DOI: 10.1103/PhysRevA.30.1142
- G. Vitrant, J.M. Raimond, M. Gross, S. Haroche. J. Phys. B: At. Mol. Phys., 15 (2), L49 (1982). DOI: 10.1088/0022-3700/15/2/004
- R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Low, L. Santos, T. Pfau. Phys. Rev. Lett., 99 (16), 163601 (2007). DOI: 10.1103/PhysRevLett.99.163601
- N. Duarte Gomes, B. da Fonseca Magnani, J.D. Massayuki Kondo, L.G. Marcassa. Atoms, 10 (2), 58 (2022). DOI: 10.3390/atoms10020058
- J.D. Pritchard, D. Maxwell, A. Gauguet, K.J. Weatherill, M.P.A. Jones, C.S. Adams. Phys. Rev. Lett., 105 (19), 193603 (2010). DOI: 10.1103/PhysRevLett.105.193603
- O. Firstenberg , T. Peyronel, Q.-Y. Liang, A.V. Gorshkov, M.D. Lukin, V. Vuletic. Nature, 502 (10), 71 (2013). DOI: 10.1038/nature12512
- E.A. Yakshina, D.B. Tretyakov, I.I. Beterov, V.M. Entin, C. Andreeva, A. Cinins, A. Markovski, Z. Iftikhar, A. Ekers, I.I. Ryabtsev. Phys. Rev. A, 94 (4), 043417 (2016). DOI: 10.1103/PhysRevA.94.043417
- A. Mazalam, K. Michulis, I.I. Beterov, N.N. Bezuglov, A.N. Klyucharev, A. Ekers. Opt. Spectr., 127 (3), 375 (2019). DOI: 10.1134/S0030400X19090200
- S. Saakyan, N. Morozov, V. Sautenkov, B.B. Zelener. Atoms, 11 (4), 73 (2023). DOI: 10.3390/atoms11040073
- .V. Taichenachev, V.I. Yudin, S.N. Bagayev. Phys. -- Uspekhi, 59 (2), 184 (2016). DOI: 10.3367/UFNe.0186.201602j.0193
- .F. Stelmashenko, O.A. Klezovich, V.N. Baryshev, V.A. Tishchenko, I.Yu. Blinov, V.G. Palchikov, V.D. Ovsyannikov. Opt. Spectrosc., 128 (8), 1067 (2020). DOI: 10.1134/S0030400X20080366
- W. Clark, C.H. Greene. Phys. Rev. A, 56 (1), 403 (1997). DOI: 10.1103/PhysRevA.56.403
- A.I. Al-Sharif, R. Resta, C.J. Umrigar. Phys. Rev. A, 57 (4), 2466 (1998). DOI: 10.1103/PhysRevA.57.2466
- C.B. Xu, X.P. Xie, R.C. Zhao, W. Sun, P. Xue, Z.P. Zhong, W. Huang, X.Y. Xu. J. Phys. B: At. Mol. Opt. Phys., 31 (24), 5355 (1998). DOI: 10.1088/0953-4075/31/24/016
- N. Zheng, D. Ma, R. Yang, T. Zhou, T. Wang, S. Han. J. Chem. Phys., 113 (5), 1681 (2000). DOI: 10.1063/1.481969
- J. Migdalek. At. Data Nucl. Data Tables, 135--136, 101355 (2020). DOI: 10.1016/j.adt.2020.101355
- V.V. Kuzenov, S.V. Ryzhkov, V.V. Shumaev. Prob. Atomic Sci. Technol., 95, 97 (2015)
- V.V. Kuzenov, S.V. Ryzhkov, V.V. Shumaev. Prob. Atomic Sci. Technol., 98, 53 (2015)
- P. Gombas. Die statistische theorie des atoms und ihre anwendungen. (Springer-Verlag, Luxemburg, 1949), sect. 24
- D.A. Kirzhnits, Y.E. Lozovik, G.V. Shpatakovskaya. Sov. Phys. -- Uspekhi, 18 (9), 649 (1975). DOI: 10.1070/PU1975v018n09ABEH005199
- G.V. Shpatakovskaya. Phys. -- Uspekhi, 55 (5), 429 (2012). DOI: 10.3367/UFNe.0182.201205a.0457
- S. Seriy. OJMSi, 3 (3), 96 (2015). DOI: 10.4236/ojmsi.2015.33010
- S.H. Patil. J. Phys. B: At. Mol. Opt. Phys., 22 (13), 2051 (1989). DOI: 10.1088/0953-4075/22/13/009
- S.H. Patil. At. Data Nucl. Data Tables, 71 (1), 41 (1999). DOI: 10.1006/adnd.1998.0799
- L. Neale, M. Wilson. Phys. Rev. A, 51 (5), 4272 (1995). DOI: 10.1103/PhysRevA.51.4272
- Z. Xianzhou, S. Jinfeng, L. Yufang. J. Phys. B: At. Mol. Opt. Phys., 25 (8), 1893 (1992). DOI: 10.1088/0953-4075/25/8/021
- A.S. Kornev, B.A. Zon. J. Phys. B: At. Mol. Opt. Phys., 36 (19), 4027 (2003). DOI: 10.1088/0953-4075/36/19/011
- A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team. NIST Atomic Spectra Database (ver. 5.10) [Electronic resource]. URL: https://physics.nist.gov/asd
- I.S. Madjarov, J.P. Covey, A.L. Shaw, J. Choi, A. Kale, A. Cooper, H. Pichler, V. Schkolnik, J.R. Williams, M. Endres. Nat. Phys., 16, 857 (2020). DOI: 10.1038/s41567-020-0903-z
- P.G. Burke. Potential scattering in atomic physics (Springer US, New York, 2012), ch. 6, eq. 176
- L.H. Thomas. Proc. Camb. Phil. Soc., 23, 542 (1926). DOI: 10.1017/S0305004100011683
- E. Fermi. Z. Phys., 48, 73 (1928)
- P.A.M. Dirac. Proc. Camb. Phil. Soc., 26, 376 (1930). DOI:10.1017/S0305004100016108
- J. Schwinger. Phys. Rev. A, 24 (5), 2353 (1981). DOI: 10.1103/PhysRevA.24.2353
- H.J. Brudner, S. Borowitz. Phys. Rev., 120 (6), 2053 (1960). DOI: 10.1103/PhysRev.120.2053
- E. Fermi, E. Amaldi. Mem. Accad. d'Italia, 6, 119 (1934)
- I.I. Beterov, I.I. Ryabtsev, D.B. Tretyakov, V.M. Entin. Phys. Rev. A, 79 (5), 052504 (2009). DOI: 10.1103/PhysRevA.79.052504
- L.D. Landau, E.M. Lifshitz. Quantum mechanics, nonrelativistic theory (Pergamon, Oxford, 1991), sect. 49
- L.D. Landau, E.M. Lifshitz. Mechanics (Elsevier Science, Amsterdam, 1982), sect. 15
- V.V. Kazakov, V.G. Kazakov, O.I. Meshkov, A.S. Yatsenko. Phys. Scr., 92, 105002 (2017). DOI: 10.1088/1402-4896/aa822e
- E. Biemont, P. Quinet, V. Van Renterghem. J. Phys. B: At. Mol. Opt. Phys., 31 (24), 5301 (1998). DOI: 10.1088/0953-4075/31/24/012
- A.S. Kornev, I.M. Semiletov, B.A. Zon. J. Phys. B: At. Mol. Opt. Phys., 47 (20), 204026 (2014). DOI: 10.1088/0953-4075/47/20/204026
- A.S. McNeill, K.A. Peterson, D.A. Dixon. J. Chem. Phys., 153 (17), 174304 (2020). DOI: 10.1063/5.0026876
- J. Mitroy, M.S. Safronova, C.W. Clark. J. Phys. B: At. Mol. Opt. Phys., 43 (20), 202001 (2010). DOI: 10.1088/0953-4075/43/20/202001
- P. Neogrady, V. Kello, M. Urban, A. Sadlej. Theor. Chim. Acta, 93, 101 (1996). DOI: 10.1007/BF01113551
- W.R. Johnson, K.T. Cheng. Phys. Rev. A, 53 (3), 1375 (1996). DOI: 10.1103/PhysRevA.53.1375
- A.K. Bhatia, R.J. Drachman. Can. J. Phys., 75 (1), 11 (1997). DOI: 10.1139/p96-132
- U. Opik. Proc. Phys. Soc., 92 (3), 566 (1967). DOI: 10.1088/0370-1328/92/3/308
- W. Johnson, D. Kolb, K.-N. Huang. At. Data Nucl. Data Tables, 28 (2), 333 (1983). DOI: 10.1016/0092-640X(83)90020-7
- R.D. Shannon. Acta Cryst. A, 32 (5), 751 (1976). DOI: 10.1107/S0567739476001551
- R. Grimes, N. Kuganathan, C. Galvin, M. Jackson, A. Hodgson, A. Kenich, T.Y. Ren. Database of Ionic Radii [Electronic source]. URL: http://abulafia.mt.ic.ac.uk/shannon/
- M.G. Medvedev, I.S. Bushmarinov, J. Sun, J.P. Perdew, K.A. Lyssenko. Science, 355 (6320), 49 (2017). DOI: 10.1126/science.aah5975
- A.S. Kornev, K.I. Suvorov, V.E. Chernov, I.V. Kopytin, B.A. Zon. Opt. Spectr., 127 (5), 798 (2019). DOI: 10.1134/S0030400X1911016X.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.