Effect of polyelectrolyte spacer thickness on fluorescence decay kinetics of IgG-FITC conjugates near plasmonic silver film
Stsiapura V. I. 1, Kulakovich O.S. 2, Maskevich A.A.3, Guzatov D.V.3, Demir H. V.4, Gaponenko S.V.2, Maskevich S. A.1
1International Sakharov Environmental Institute of Belarusian State University, Minsk, Belarus
2B.I.Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
3Yanka Kupala Grodno State University, Grodno, Belarus
4Bilkent University, Bilkent, Ankara, Turkey
Email: stsiapura@gmail.com, o.kulakovich@ifanbel.bas-net.by, amaskevich@grsu.by, guzatov@mail.ru, volkan@bilkent.edu.tr, s.gaponenko@ifanbel.basnet.by, sergei.maskevich@gmail.com

PDF
Enhancement of fluorescence near metallic nanostructures can significantly improve sensitivity of fluorescence-based detection methods and this effect has found wide applications in diagnostics and biosensors development. In the current paper we studied fluorescence decay kinetics of immunoglobulin G conjugates with fluorescein isothiocyanate near plasmonic silver film formed by colloidal nanoparticles having size of ~40 nm. The emission kinetics was found to depend on thickness of a spacer composed from cationic/anionic polyelectrolytes (number of layers changed from 1 to 7), that separated fluorescent conjugate from the plasmonic film. Multiexponential fluorescence decay kinetics was modeled by continuous lifetime distribution of emitting centers using maximum entropy method. Based on theoretical calculations of radiative transition rate of fluorescent molecules near metal colloids we estimated ensemble-averaged fluorescence quantum yields of conjugates, located at different distances to plasmonic film, and found that the fluorescence enhancement for the conjugates near colloid nanoparticles was determined by changes in excitation efficiency but not due to growth of the emission quantum yield. Keywords: nanoplasmonics, fluorescence decay, maximum entropy method, colloid nanoparticle, fluorescein isothiocyanate, immunodiagnostics.
  1. J.R. Lakowicz, J. Malicka, S. D'Auria, I. Gryczynski. Anal Biochem., 320 (1), 13 (2003). DOI: 10.1016/S0003-2697(03)00351-8
  2. O. Kulakovich, N. Strekal', M. Artem'ev, A. Stupak, S. Maskevich, S. Gaponenko. J. Appl. Spectrosc., 73 (6), 892 (2006). DOI: 10.1007/s10812-006-0172-3
  3. K. Kneipp. Physics Today, 60 (11), 40 (2007). DOI: 10.1063/1.2812122
  4. M.I. Stockman. Physics Today, 64 (2), 39 (2011). DOI: 10.1063/1.3554315
  5. A. Steinbruck, A. Csaki, W. Fritzsche. Reviews in Plasmonics 2010 (NY.: Springer New York, 2012), p. 1. DOI: 10.1007/978-1-4614-0884-0_1
  6. N. Strekal, S. Maskevich. Reviews in Plasmonics 2010 (NY.: Springer New York, 2012), p. 283. DOI: 10.1007/978-1-4614-0884-0_11
  7. A. Ramanenka, S. Vaschenko, V. Stankevich, A.Y. Lunevich, Y.F. Glukhov, S. Gaponenko. J. Appl. Spectrosc., 81 (2), 222 (2014). DOI: 10.1007/s10812-014-9913-x
  8. J. Luan, A. Seth, R. Gupta, Z. Wang, P. Rathi, S. Cao, H. Gholami Derami, R. Tang, B. Xu, S. Achilefu, J.J. Morrissey, S. Singamaneni. Nature Biomedical Engineering, 4 (5), 518 (2020). DOI: 10.1038/s41551-020-0547-4
  9. V. Askirka, D. Guzatov, S. Maskevich. Opt. Spectrosc., 129, 261 (2021). DOI: 10.1134/S0030400X21020028
  10. M. Wang, M. Wang, G. Zheng, Z. Dai, Y. Ma. Nanoscale Advances, 3 (9), 2448 (2021). DOI: 10.1039/D0NA01050B
  11. N. Strekal, O. Kulakovich, V. Askirka, I. Sveklo, S. Maskevich. Plasmonics, 4 (1), 1 (2009). DOI: 10.1007/s11468-008-9063-1
  12. D.V. Guzatov, S.V. Vaschenko, V.V. Stankevich, A.Y. Lunevich, Y.F. Glukhov, S.V. Gaponenko. J. Phys. Chem. C, 116 (19), 10723 (2012). DOI: 10.1021/jp301598w
  13. A. Muravitskaya, O. Kulakovich, P.M. Adam, S. Gaponenko. Phys. Stat. Sol. B, 255 (4), 1700491 (2018). DOI: 10.1002/pssb.201700491
  14. S. Vaschenko, A. Ramanenka, O. Kulakovich, A. Muravitskaya, D. Guzatov, A. Lunevich, Y. Glukhov, S. Gaponenko. Proc. Engin., 140, 57 (2016). DOI: 10.1016/j.proeng.2015.08.1111
  15. I. Koktysh, Y.I. Melnikova, O. Kulakovich, A. Ramanenka, S. Vaschenko, A. Muravitskaya, S. Gaponenko, S. Maskevich. J. Appl. Spectrosc., 87, 870 (2020). DOI: 10.1007/s10812-020-01083-2
  16. O. Kulakovich, A. Scherbovich, I. Koktysh, Y. Melnikova, A. Ramanenka, S. Gaponenko, S. Maskevich. Z. Phys. Chem., 236 (11-12), 1603 (2022). DOI: 10.1515/zpch-2021-3110
  17. O. Kulakovich, A. Shcherbovich, A. Ramanenka, I. Koktysh, Y.I. Melnikova, S. Gaponenko, S. Maskevich. J. Appl. Spectrosc., 90 (1), 42 (2023). DOI: 10.1007/s10812-023-01500-2
  18. S.V. Gaponenko, D.V. Guzatov. Proc. IEEE, 108 (5), 704 (2020). DOI: 10.1109/jproc.2019.2958875
  19. D.V. Guzatov, S.V. Gaponenko, H.V. Demir. AIP Advances, 8 (1), 015324 (2018). DOI: 10.1063/1.5019778
  20. X. Yang, P.L. Hernandez-Martinez, C. Dang, E. Mutlugun, K. Zhang, H.V. Demir, X.W. Sun. Advanced Opt. Mater., 3 (10), 1439 (2015). DOI: 10.1002/adom.201500172
  21. Z. Lei, M. Liu, W. Ge, X. Yang, J. Chen, Y. Lu. J. Lumin., 206, 359 (2019). DOI: 10.1016/j.jlumin.2018.10.052
  22. A.P. Demchenko. Introduction to fluorescence sensing (Cham: Springer, 2015). DOI: 10.1007/978-3-319-20780-3
  23. M. Bauch, K. Toma, M. Toma, Q. Zhang, J. Dostalek. Plasmonics, 9, 781 (2014). DOI: 10.1007/s11468-013-9660-5
  24. A.B.T. Ghisaidoobe, S.J. Chung. International J. Mol. Sci., 15 (12), 22518 (2014). DOI: 10.3390/ijms151222518
  25. J.R. Alcala, E. Gratton, F. Prendergast. Biophys. J., 51 (4), 597 (1987). DOI: 10.1016/S0006-3495(87)83384-2
  26. E.P. Diamandis. Clin. Biochem., 21 (2), 139 (1988). DOI: 10.1016/0009-9120(88)90001-x
  27. A.K. Hagan, T. Zuchner. Anal. Bioanal. Chem., 400 (9), 2847 (2011). DOI: 10.1007/s00216-011-5047-7
  28. H. Mishra, B.L. Mali, J. Karolin, A.I. Dragan, C.D. Geddes. PCCP, 15 (45), 19538 (2013). DOI: 10.1039/C3CP50633A
  29. Y.-T. Liu, X.-F. Luo, Y.-Y. Lee, I.-C. Chen. Dyes and Pigments, 190, 109263 (2021). DOI: 10.1016/j.dyepig.2021.109263
  30. J.S. Beckwith, C.A. Rumble, E. Vauthey. Int. Rev. Phys. Chem., 39 (2), 135 (2020). DOI: 10.1080/0144235X.2020.1757942
  31. N. Dordevic, J.S. Beckwith, M. Yarema, O. Yarema, A. Rosspeintner, N. Yazdani, J. Leuthold, E. Vauthey, V. Wood. ACS Photonics, 5 (12), 4888 (2018). DOI: 10.1021/acsphotonics.8b01047
  32. P.C. Lee, D. Meisel. J. Phys. Chem., 86 (17), 3391 (1982). DOI: 10.1021/j100214a025
  33. O. Kulakovich, L. Gurinovich, H. Li, A. Ramanenka, L. Trotsiuk, A. Muravitskaya, J. Wei, H. Li, N. Matveevskaya, D.V. Guzatov, S. Gaponenko. Nanotechnology, 32 (3), 035204 (2021). DOI: 10.1088/1361-6528/abbdde
  34. F. Caruso. Adv. Mater., 13 (1), 11 (2001). DOI: 10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N
  35. V. Stepuro. Vesnik Grodzenskaga dzyarzhaunaga universiteta imya Yanki Kupaly. Seryya 2, 5 (1), 52 (2001) (in russian)
  36. A. Maskevich, V. Stsiapura, P. Balinski. J. Appl. Spectrosc., 77 (2), 194 (2010). DOI: 10.1007/s10812-010-9314-8
  37. A. Maskevich, V. Stepuro, S. Kurguzenkov, A. Lavysh. Vesnik Grodzenskaga dzyarzhaunaga universiteta imya Yanki Kupaly. Seryya 2, 3 (159), 107 (2013) (in russian)
  38. M. Vincent, J. Gallay, A.P. Demchenko. J. Phys. Chem., 99 (41), 14931 (1995). DOI: 10.1021/j100041a006
  39. A. Livesey, J. Brochon. Biophys. J., 52 (5), 693 (1987). DOI: 10.1016/S0006-3495(87)83264-2
  40. J.-C. Brochon. Methods Enzymol., 240, 262 (1994). DOI: 10.1016/s0076-6879(94)40052-0
  41. A. Siemiarczuk, B.D. Wagner, W.R. Ware. J. Phys. Chem., 94 (4), 1661 (1990). DOI: 10.1021/j100367a080
  42. P.J. Steinbach, R. Ionescu, C.R. Matthews. Biophys. J., 82 (4), 2244 (2002). DOI: 10.1016/S0006-3495(02)75570-7
  43. R. Esposito, C. Altucci, R. Velotta. J. Fluoresc., 23 (1), 203 (2013). DOI: 10.1007/s10895-012-1135-0
  44. A.T. Kumar, L. Zhu, J. Christian, A.A. Demidov, P.M. Champion. J. Phys. Chem. B, 105 (32), 7847 (2001). DOI: 10.1021/jp0101209
  45. E. Henry, E. Deprez, J.-C. Brochon. J. Mol. Struct., 1077, 77 (2014). DOI: 10.1016/j.molstruc.2013.12.079
  46. R. Sjoback, J. Nygren, M. Kubista. Spectrochim. Acta Part A: Molecular and Biomolecular Spectrosc., 51 (6), L7 (1995). DOI: 10.1016/0584-8539(95)01421-P
  47. C. Deka, B.E. Lehnert, N.M. Lehnert, G.M. Jones, L.A. Sklar, J.A. Steinkamp. Cytometry, 25 (3), 271 (1996). DOI: 10.1002/(SICI)1097-0320(19961101)25:3<271::AID- CYTO8>3.0.CO;2-I
  48. G. Hungerford, J. Benesch, J.F. Mano, R.L. Reis. Photochem. \& Photobiolog. Sci., 6 (2), 152 (2007). DOI: 10.1039/b612870j
  49. E. Grell, E. Lewitzki, H. Ruf, K. Brand, F.W. Schneider, T. von der Haar, K.A. Zachariasse. J. Fluoresc., 4 (3), 251 (1994). DOI: 10.1007/bf01878459
  50. E. Lewitzki, E. Schick, R. Hutterer, F.W. Schneider, E. Grell. J. Fluoresc., 8 (2), 115 (1998). DOI: 10.1023/a:1022542208027
  51. R.F. Chen, J.R. Knutson. Anal. Biochem., 172 (1), 61 (1988). DOI: 10.1016/0003-2697(88)90412-5
  52. P. Dennler, E. Fischer, R. Schibli. Antibodies, 4 (3), 197 (2015). DOI: 10.3390/antib4030197
  53. K. Palo, L. Brand, C. Eggeling, S. Jager, P. Kask, K. Gall. Biophys. J., 83 (2), 605 (2002). DOI: 10.1016/s0006-3495(02)75195-3
  54. O. Kulakovich, S. Gaponenko, D. Guzatov. J. Appl. Spectrosc., 90 (3), 567 (2023). DOI: 10.1007/s10812-023-01567-x.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru