Spassky D. A.
1,2, Nikiforov I. V.
3, Vasil'ev A. N.
11Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow, Russia
2Institute of Physics, University of Tartu, Tartu, Estonia
3Lomonosov Moscow State University, Moscow, Russia
Email: spas@srd.sinp.msu.ru, anv@sinp.msu.ru
Luminescence properties of Yb1-xScxPO4 solid solutions obtained by solid-state reaction were studied. According to the data of XRD analysis the synthesized solid solutions are single phase; the change of crystal lattice parameters is described by Vegard's law. The origin of emission centers was determined under the excitation in UV and VUV spectral regions. It was shown that all solid solutions are characterized by the emission in UV region related to the charge transfer luminescence (x#1) or radiative relaxation of excitons (x=1). The increased efficiency of energy transfer to the emission centers was shown for solid solutions and attributed to the separation length constrain of the non-thermalized electrons and holes. This effect results in the UV luminescence enhancement in Yb1-xScxPO4 solid solutions and may be of applied interest for the creation of new phosphors with intense luminescence in the UV range. Keywords: energy transfer, UV-luminescence, charge transfer luminescence, solid solutions, ScPO4, YbPO4.
- D. Welch, M. Buonanno, V. Grilj, I. Shuryak, C. Crickmore, A.W. Bigelow, G. Randers-Pehrson, G.W. Johnson, David J. Brenner. Sci. Rep. 8, 2752 (2018). https://doi.org/10.1038/s41598-018-21058-w
- Xianli Wang, Yafei Chen, Feng Liu, Zhengwei Pan. Nature Commun. 11, 2040 (2020). https://doi.org/10.1038/s41467-020-16015-z
- Y. Zhou, D.D. Jia, L.A. Lewis, S.P. Feofilov, R.S. Meltzer. Nucl. Instrum. Meth. A 633, 31 (2011). https://doi.org/10.1016/j.nima.2010.12.238
- B. Caillier, J. Caiut, C. Muja, J. Demoucron, R. Mauricot, J. Dexpert-Ghys, Ph. Guillot. Photochem. Photobiol. 91, 526 (2015). https://doi.org/10.1111/php.12426
- H. Kitagawa, T. Nomura, T. Nazmul, K. Omori, N. Shigemoto, T. Sakaguchi, H. Ohge. Am. J. Infect. Control 49, 299 (2021). https://doi.org/10.1016/j.ajic.2020.08.022
- S. Miwa, S. Yano, Y. Hiroshima, Y. Tome, F. Uehara, S. Mii, E.V. Efimova, H. Kimura, K. Hayashi, H. Tsuchiya, R.M. Hoffman. J. Cell. Biochem. 114, 2493 (2013). https://doi.org/10.1002/jcb.24599
- Puxian Xiong, Mingying Peng. Opt. Mater. X 2, 100022 (2019). https://doi.org/10.1016/j.omx.2019.100022
- G.V. Belessiotis, P.P. Falara, I. Ibrahim, A.G. Kontos. Materials 15, 4629 (2022). https://doi.org/10.3390/ma15134629
- M. Broxtermann, L.M. Funke, J.-N. Keil, H. Eckert, M.R. Hansen, A. Meijerink, T. Yu, N. Braun, Th. Justel. J. Lumin. 202, 450 (2018). https://doi.org/10.1016/j.jlumin.2018.05.056
- M. Ferhi, K. Horchani-Naifer, S. Hraiech, M. Ferid, Y. Guyot, G. Boulon. Rad. Meas. 46, 1033 (2011). http://dx.doi.org/10.1016/j.radmeas.2011.06.062
- J.M.A. Caiut, S. Lechevallier, J. Dexpert-Ghys, B. Caillier, Ph. Guillot. J. Lumin. 131, 628 (2011). https://doi.org/10.1016/j.jlumin.2010.11.004
- J. Kappelhoff, J.-N. Keil, M. Kirm, V.N. Makhov, K. Chernenko, S. Moller, Th. Justel. Chem. Phys. 562, 111646 (2022). https://doi.org/10.1016/j.chemphys.2022.111646
- L.A. Boatner. Rev. Mineral. Geochem. 48, 87 (2002). https://doi.org/10.2138/rmg.2002.48.4
- M. Ridley, B. McFarland, C. Miller, E. Opila. Materialia 21, 101289 (2022). https://doi.org/10.1016/j.mtla.2021.101289
- A.E. Grechanovsky, N.N. Eremin, V.S. Urusov. FTT 55, 1813 (2013). (in Russian)
- A.G. Herandez, D. Boyer, A. Potdevin, G. Chadeyron, A. G. Murillo, F. de J.C. Romo, R. Mahiou. Opt. Mater. 73, 350 (2017). https://doi.org/10.1016/j.optmat.2017.08.034
- V.S. Levushkina, D.A. Spassky, E.M. Aleksanyan, M.G. Brik, M.S. Tretyakova, B.I. Zadneprovski, A.N. Belsky. J. Lumin. 171, 33 (2016). https://doi.org/10.1016/j.jlumin.2015.10.074
- D. Spassky, A.N. Vasil'ev, V. Nagirnyi, I. Kudryavtseva, D. Deyneko, I. Nikiforov, I. Kondratyev, B. Zadneprovski. Materials 15, 6844 (2022). https://doi.org/10.3390/ma15196844
- V.S. Voznyak-Levushkina, A.A. Arapova, D.A. Spassky, I.V. Nikiforov, B.I. Zadneprovsky. FTT 64, 12, 1925 (2022). (in Russian). https://doi.org/10.21883/FTT.2022.12.53644.449
- T. Lyu, P. Dorenbos. J. Mater. Chem. C 6, 369 (2018). https://doi.org/10.1039/c7tc05221a
- Congting Sun, Dongfeng Xue. Dalton Trans. 46, 7888 (2017). https://doi.org/10.1039/c7dt01375b
- A. Belsky, A. Gektin, A.N. Vasil'ev. Phys. Status Solidi B 257, 1900535 (2020). http://dx.doi.org/10.1002/pssb.201900535
- R. Kirkin, V.V. Mikhailin, A.N. Vasil'ev. IEEE T. Nucl. Sci. 59, 5, 2057 (2012). http://dx.doi.org/10.1109/TNS.2012.2194306
- A. Trukhin, L.A. Boatner. Mater. Sci. Forum. Trans. Tech. Publications Aedermannsdorf, Switzerland. 239, 573 (1997)
- E. Nakazawa. Chem. Phys. Lett. 56, 161 (1978). https://doi.org/10.1016/0009-2614(78)80210-3
- L. van Pieterson, M. Heeroma, E. de Heer, A. Meijerink. J. Lumin. 91, 177 (2000). https://doi.org/10.1016/S0022-2313(00)00214-3
- M. Nikl, A. Yoshikawa, T. Fukuda. Opt. Mater. 26, 545 (2004). http://dx.doi.org/10.1016/j.optmat.2004.05.002
- D. Krasikov, A. Scherbinin, A. Vasil'ev, I. Kamenskikh, V. Mikhailin. J. Lumin. 128, 1748 (2008). http://doi.org/10.1016/j.jlumin.2008.04.001
- A. Fukabori, V. Chani, K. Kamada, A. Yoshikawa. J. Cryst. Growth 352, 124 (2012). http://dx.doi.org/10.1016/j.jcrysgro.2012.01.027
- M. Nikl, N. Solovieva, J. Pejchal, J.B. Shim, A. Yoshikawa, T. Fukuda, A. Vedda, M. Martini, D.H. Yoon. Appl. Phys. Lett. 84, 882 (2004). http://dx.doi.org/10.1063/1.1645987
- R. Shannon. Acta Cryst. A 32, 751 (1976). https://doi.org/10.1107/S0567739476001551
- L. Vegard. Z. Fur. Phys. 5, 17, 17 (1921). https://doi.org/10.1007/BF01349680
- P. Dorenbos. J. Phys.: Condens. Matter. 25, 225501 (2013). https://doi.org/10.1088/0953-8984/25/22/225501
- P. Dorenbos. Opt. Mater. 69, 8 (2017). https://doi.org/10.1016/j.optmat. 2017.03.061
- O. Voloshyna, O. Sidletskiy, D. Spassky, Ia. Gerasymov, I. Romet, A. Belsky. Opt. Mater. 76, 382 (2018). https://doi.org/10.1016/j.optmat.2018.01.003
- O. Sidletskiy, A. Gektin, A. Belsky. Phys. Status Solidi A 211, 2384 (2014). https://doi.org/10.1002/pssa.201431137
- D. Spassky, S. Omelkov, H. Magi, V. Mikhailin, A. Vasil'ev, N. Krutyak, I. Tupitsyna, A. Dubovik, A. Yakubovskaya, A. Belsky. Opt. Mater. 36, 1660 (2014). https://doi.org/10.1016/j.optmat.2013.12.039
- A.V. Gektin, A.N. Belsky, A.N. Vasil'ev. IEEE Trans. Nucl. Sci. 61, 262 (2013). https://doi.org/10.1109/TNS.2013.2277883
- D. Spassky, A. Vasil'ev, S. Vielhauer, O. Sidletskiy, O. Voloshyna, A. Belsky. Opt. Mater. 80, 247 (2018). https://doi.org/10.1016/j.optmat.2018.05.019
- Z. Khadraoui, K. Horchani-Naifer, M. Ferhi, M. Ferid. Chem. Phys. 457, 37 (2015). http://dx.doi.org/10.1016/j.chemphys.2015.05.014
- F. Kang, G. Sun, P. Boutinaud, F. Gao, Z. Wang, J. Lu, S. Xiao. J. Mater. Chem. C 7, 32, 9865 (2019). https://doi.org/10.1039/c9tc01385g
- L. Han, Ch. Guo, Zh. Ci, Ch. Wang, Yu. Wang, Y. Huang. Chem. Eng. J. 312, 204 (2017). http://dx.doi.org/10.1016/j.cej.2016.11.136
- D.J. Singh, G.E. Jellison, Jr., L.A. Boatner. Phys. Rev. B 74, 155126 (2006). http://dx.doi.org/10.1103/PhysRevB.74.155126
- A.N. Trukhin, L.A. Boatner. In: Proceeding of the 5th Int. Conf. on Inorganic Scintillators and their Applications / Ed. V. Mikhailin. University of Moscow, Russia, M. (2000). P. 697-702
- G. Stryganyuk, S. Zazubovich, A. Voloshinovskii, M. Pidzyrailo, G. Zimmerer, R. Peters, K. Petermann. J. Phys.: Condens. Matter 19, 036202 (2007). http://dx.doi.org/10.1088/0953-8984/19/3/036202
- N.V. Guerassimova, I.A. Kamenskikh, V.V. Mikhailin, I.N. Shpinkov, D.A. Spassky, E.E. Lomonova, M.A. Borik, N.I. Markov, V.A. Panov, M.A. Veshnyakova, M. Kirm, G. Zimmerer. Nucl. Instrum. Meth. A 486, 1-2, 234 (2002). http://dx.doi.org/10.1016/S0168-9002(02)00708-8
- I.A. Kamenskikh, N. Guerassimova, C. Dujardin, N. Garnier, G. Ledoux, C. Pedrini, M. Kirm, A. Petrosyan, D. Spassky. Opt. Mater. 24, 267 (2003). http://dx.doi.org/10.1016/S0925-3467(03)00133-2
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.