Studies of AlxGa1-xN/AlN, nanosized columnar heterostructures grown on silicon substrates with various surface modifications
P.V. Seredin1, A.M. Mizerov2, N.A. Kurilo1, S. A. Kukushkin2,3, D.L. Goloshchapov1, N.S. Buylov1, A.S. Len'shin1, D.N. Nesterov1, M.S. Sobolev2, S.N. Timoshnev2, K.Yu. Shubina2
1Voronezh State University, Voronezh, Russia
2Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
3Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, St. Petersburg, Russia
Email: paul@phys.vsu.ru

PDF
The growth of nanosized columnar AlxGa1-xN/AlN heterostructures on the surface of silicon substrates of three types, namely, on a standard atomically smooth c-Si substrate, a Si substrate with a transition layer of porous silicon por-Si/c-Si, and a hybrid a substrate containing a layer of silicon carbide grown by the method of coordinated substitution of atoms on the surface of porous silicon SiC/por-Si/c-Si. The complex structural-spectroscopic analysis carried out showed that the epitaxial growth of the AlN nucleation layer on all types of substrates under N-enriched conditions leads to the formation of AlxGa1-xN/AlN heterostructures with a Ga-polar surface. It was found that a layer of an ordered AlxGa1-xN solid solution was formed only on the SiC/por-Si/c-Si hybrid substrate. On c-Si and por-Si/c-Si substrates, the AlxGa1-xN layer is in the state of a disordered solid solution with an excess content of gallium atoms. It has been demonstrated that AlxGa1-xN nanosized columns formed on a SiC/por-Si/c-Si substrate are tilted relative to the c-axis, which is associated with the peculiarities of the formation of the SiC layer by the method of coordinated substitution of atoms on a porous Si substrate, which leads to the formation of inclined (111) SiC facets. at the interface between the (111) Si surface and pores in Si. Optical studies of the grown samples showed that the optical band-to-band transition for the AlxGa1-xN solid solution with E_g=3.99 eV was observed only when studying the heterostructure grown on the SiC/por-Si/c-Si substrate. The results obtained in this work demonstrate the promise of using SiC/por-Si/c-Si substrates for the integration of silicon technology and the technology of synthesizing nanosized AlxGa1-xN columnar heterostructures by molecular beam epitaxy with nitrogen plasma activation. Keywords: nanosized columnar AlxGa1-xN/AlN heterostructures, epitaxial growth, porous silicon, silicon carbide, pliable substrate.
  1. G. Dewey, M.K. Hudait, Kangho Lee, R. Pillarisetty, W. Rachmady, M. Radosavljevic, T. Rakshit, R. Chau. IEEE Electron Device Lett., 29, 1094 (2008). DOI: 10.1109/LED.2008.2002945
  2. D. Kohen, X.S. Nguyen, S. Yadav, A. Kumar, R.I. Made, C. Heidelberger, X. Gong, K.H. Lee, K.E.K. Lee, Y.C. Yeo, S.F. Yoon, E.A. Fitzgerald. AIP Adv., 6, 085106 (2016). DOI: 10.1063/1.4961025
  3. J.A. Del Alamo, D.A. Antoniadis, J. Lin, W. Lu, A. Vardi, X. Zhao. IEEE J. Electron. Dev. Soc., 4, 205 (2016). DOI: 10.1109/JEDS.2016.2571666
  4. J.A. del Alamo. Nature, 479, 317 (2011). DOI: 10.1038/nature10677
  5. H. Riel, L.-E. Wernersson, M. Hong, J.A. del Alamo. MRS Bull., 39, 668 (2014). DOI: 10.1557/mrs.2014.137
  6. Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, G. Roelkens. Laser Photon. Rev., 11, 1700063 (2017). DOI: 10.1002/lpor.201700063
  7. H.-C. Wang, T.-Y. Tang, C.C. Yang, T. Malinauskas, K. Jarasiunas. Thin Solid Films, 519, 863 (2010). DOI: 10.1016/j.tsf.2010.08.149
  8. J. Lu, X. Zheng, M. Guidry, D. Denninghoff, E. Ahmadi, S. Lal, S. Keller, S.P. DenBaars, U.K. Mishra. Appl. Phys. Lett., 104, 092107 (2014). DOI: 10.1063/1.4867508
  9. S. Keller, N.A. Fichtenbaum, M. Furukawa, J.S. Speck, S.P. DenBaars, U.K. Mishra. Appl. Phys. Lett., 90, 191908 (2007). DOI: 10.1063/1.2738381
  10. A.M. Mizerov, S.A. Kukushkin, Sh.Sh. Sharofidinov, A.V. Osipov, S.N. Timoshnev, K.Yu. Shubina, T.N. Berezovskaya, D.V. Mokhov, A.D. Buravlev. Phys. Solid State, 61, 2277 (2019). DOI: 10.1134/S106378341912031X
  11. Y. Wu, X. Liu, A. Pandey, P. Zhou, W.J. Dong, P. Wang, J. Min, P. Deotare, M. Kira, E. Kioupakis, Z. Mi. Prog. Quantum Electron., 85, 100401 (2022). DOI: 10.1016/j.pquantelec.2022.100401
  12. A.M. Mizerov, P.N. Kladko, E.V. Nikitina, A.Yu. Egorov. Semiconductors, 49, 274 (2015). DOI: 10.1134/S1063782615020177
  13. L. Goswami, R. Pandey, G. Gupta. Appl. Surf. Sci., 449, 186 (2018). DOI: 10.1016/j.apsusc.2018.01.287
  14. P.V. Seredin, H. Leiste, A.S. Lenshin, A.M. Mizerov. Appl. Surf. Sci., 508, 145267 (2020). DOI: 10.1016/j.apsusc.2020.145267
  15. P.V. Seredin, D. Goloshchapov, A.O. Radam, A.S. Lenshin, N.S. Builov, A.M. Mizerov, I.A. Kasatkin. Opt. Mater., 128, 112346 (2022). DOI: 10.1016/j.optmat.2022.112346
  16. A.M. Mizerov, S.N. Timoshnev, M.S. Sobolev, E.V. Nikitina, K.Yu. Shubina, T.N. Berezovskaia, I.V. Shtrom, A.D. Bouravleuv. Semiconductors, 52, 1529 (2018). DOI: 10.1134/S1063782618120175
  17. A.M. Mizerov, S.N. Timoshnev, E.V. Nikitina, M.S. Sobolev, K.Yu. Shubin, T.N. Berezovskaia, D.V. Mokhov, W.V. Lundin, A.E. Nikolaev, A.D. Bouravleuv. Semiconductors, 53, 1187 (2019). DOI: 10.1134/S1063782619090112
  18. S.A. Kukushkin, A.V. Osipov, N.A. Feoktistov. Phys. Solid State, 56, 1507 (2014). DOI: 10.1134/S1063783414080137
  19. N. Yamabe, H. Shimomura, T. Shimamura, T. Ohachi. J. Cryst. Growth, 311, 3049 (2009). DOI: 10.1016/j.jcrysgro.2009.01.076
  20. A.M. Mizerov, V.N. Jmerik, P.S. Kop'ev, S.V. Ivanov. Phys. Status Solidi C, 7, 2046 (2010). DOI: 10.1002/pssc.200983488
  21. K.Y. Shubina, D.V. Mokhov, T.N. Berezovskaya, E.V. Nikitina, A.M. Mizerov. J. Phys. Conf. Ser., 1851, 012004 (2021). DOI: 10.1088/1742-6596/1851/1/012004
  22. K.Y. Shubina, D.V. Mokhov, T.N. Berezovskaya, E.V. Pirogov, A.V. Nashchekin, S.S. Sharofidinov, A.M. Mizerov. J. Phys. Conf. Ser., 2086, 012037 (2021). DOI: 10.1088/1742-6596/2086/1/012037
  23. https://www.ioffe.ru/SVA/
  24. S. Kukushkin, A. Osipov, V. Bessolov, B. Medvedev, V. Nevolin, K. Tcarik. Rev. Adv. Mater. Sci., 17, 1 (2008)
  25. S.A. Kukushkin, A.V. Osipov. J. Phys. D: Appl. Phys., 47, 313001 (2014). DOI: 10.1088/0022-3727/47/31/313001
  26. S.A. Kukushkin, A.V. Osipov. Condensed matter and interphase boundaries, 24, 406 (2022). DOI: 10.17308/kcmf.2022.24/10549
  27. V.V. Kidalov, S.A. Kukushkin, A. Osipov, A. Redkov, A.S. Grashchenko, I.P. Soshnikov. Mater. Phys. Mech., 36, 39 (2018). DOI: 10.18720/MPM.3612018_4
  28. S.A. Kukushkin, A.V. Osipov, V.N. Bessolov, E.V. Konenkova, V.N. Panteleyev. FTT 59, 660 (2017) (in Russian). DOI: 10.21883/FTT.2017.04.44266.287
  29. V.S. Harutyunyan, A.P. Aivazyan, E.R. Weber, Y. Kim, Y. Park, S.G. Subramanya. J. Phys. Appl. Phys., 34, A35 (2001). DOI: 10.1088/0022-3727/34/10A/308
  30. H.-P. Lee, J. Perozek, L.D. Rosario, C. Bayram. Sci. Rep., 6, 37588 (2016). DOI: 10.1038/srep37588
  31. S.K. Jana, P. Mukhopadhyay, S. Ghosh, S. Kabi, A. Bag, R. Kumar, D. Biswas. J. Appl. Phys., 115, 174507 (2014). DOI: 10.1063/1.4875382
  32. P.V. Seredin, A.V. Glotov, E.P. Domashevskaya, I.N. Arsentyev, D.A. Vinokurov, I.S. Tarasov. Appl. Surf. Sci., 267, 181 (2013). DOI: 10.1016/j.apsusc.2012.09.053
  33. P.V. Seredin, A.V. Glotov, V.E. Ternovaya, E.P. Domashevskaya, I.N. Arsentyev, L.S. Vavilova, I.S. Tarasov. Semiconductors, 45 (11), 1433 (2011). DOI: 10.1134/S1063782611110236
  34. P.V. Seredin, A.V. Glotov, V.E. Ternovaya, E.P. Domashevskaya, I.N. Arsentyev, D.A. Vinokurov, A.L. Stankevich, I.S. Tarasov. Semiconductors, 45 (4), 481 (2011). DOI: 10.1134/S106378261104021X
  35. P.V. Seredin, H. Leiste, A.S. Lenshin, A.M. Mizerov. Results Phys., 16, 102919 (2020). DOI: 10.1016/j.rinp.2019.102919
  36. P.V. Seredin, A.S. Lenshin, D.S. Zolotukhin, I.N. Arsentyev, D.N. Nikolaev, A.V. Zhabotinskiy. Phys. B Condens. Matter., 530, 30 (2018). DOI: 10.1016/j.physb.2017.11.028
  37. Tauc J. Prog. Semicond. Heywood Lond., 9, 87 (1965)
  38. P.V. Seredin, A.S. Lenshin, A.M. Mizerov, H. Leiste, M. Rinke. Appl. Surf. Sci., 476, 1049 (2019). DOI: 10.1016/j.apsusc.2019.01.239
  39. S. Bakalova, A. Szekeres, M. Anastasescu, M. Gartner, L. Duta, G. Socol, C. Ristoscu, I.N. Mihailescu. J. Phys. Conf. Ser., 514, 012001 (2014). DOI: 10.1088/1742-6596/514/1/012001
  40. N. Sharma, S. Sharma, K. Prabakar, S. Amirthapandian, S. Ilango, S. Dash, A.K. Tyagi. (2015). DOI: 10.48550/ARXIV.1507.04867
  41. A.M. Alsaad, Q.M. Al-Bataineh, I.A. Qattan, A.A. Ahmad, A. Ababneh, Z. Albataineh, I.A. Aljarrah, A. Telfah. Front. Phys., 8, 115 (2020). DOI: 10.3389/fphy.2020.00115
  42. K.M. Lee, J.Y. Hwang, B. Urban, A. Singh, A. Neogi, S.K. Lee, T.Y. Choi. Solid State Commun., 204, 16 (2015). DOI: 10.1016/j.ssc.2014.11.020
  43. W. Shan, J.W. Ager, K.M. Yu, W. Walukiewicz, E.E. Haller, M.C. Martin, W.R. McKinney, W. Yang. J. Appl. Phys., 85, 8505 (1999). DOI: 10.1063/1.370696
  44. E. Serban, J. Palisaitis, M. Junaid, L. Tengdelius, H. Hogberg, L. Hultman, P. Persson, J. Birch, Ch.-L. Hsiao. Energies, 10, 1322 (2017). DOI: 10.3390/en10091322
  45. G.L. Zhao, D. Bagayoko. New J. Phys., 2, 16 (2000). DOI: 10.1088/1367-2630/2/1/316
  46. A. Arvanitopoulos, N. Lophitis, S. Perkins, K.N. Gyftakis, M. Belanche Guadas, M. Antoniou. In: 2017 IEEE 11th Int. Symp. Diagn. Electr. Mach. Power Electron. Drives SDEMPED (IEEE, Tinos, Greece, 2017), p. 565-571. DOI: 10.1109/DEMPED.2017.8062411
  47. N. Aggarwal, S. Krishna, L. Goswami, S.K. Jain, A. Pandey, A. Gundimeda, P. Vashishtha, J. Singh, S. Singh, G. Gupta. SN Appl. Sci., 3, 291 (2021). DOI: 10.1007/s42452-021-04274-4
  48. H. Angerer, D. Brunner, F. Freudenberg, O. Ambacher, M. Stutzmann, R. Hopler, T. Metzger, E. Born, G. Dollinger, A. Bergmaier, S. Karsch, H.-J. Korner. Appl. Phys. Lett., 71, 1504 (1997). DOI: 10.1063/1.119949
  49. Y. Turkulets, N. Shauloff, O.H. Chaulker, Y. Shapira, R. Jelinek, I. Shalish. Surf. Interfaces, 38, 102834 (2023). DOI: 10.1016/j.surfin.2023.102834

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru