Physics of the Solid State
Volumes and Issues
Dependences of the specific surface energy on the size and shape of the nanocrystal under various P-T conditions
Magomedov M. N. 1
1Institute for geothermal problems and renewable energy – branch of the joint Institute of high temperatures of the Russian Academy of Sciences, Makhachkala, Russia
Email: mahmag4@mail.ru

PDF
Based on the RP model, the dependences of the specific surface energy σ and surface pressure Psf on the size (N) and shape of the nanocrystal at different values of pressure P and temperature T are studied. Calculations for a gold nanocrystal have shown that at P=0, the Psf(N) function lies in the negative region, i. e. the nanocrystal is stretched by surface pressure the more the temperature is higher, or the more the nanocrystal shape deviates from the most energy-optimal shape. With a decrease in N value at P=0, the σ(N) function decreases the more noticeably the higher the temperature, or the more the nanocrystal shape deviates from the most energy-optimal shape. Based on these results, it is shown that obtained in some articles the increase in the σ(N) function with an isomorphically-isothermal decrease in N does not correspond to the physical properties of the nanocrystal. In these articles, the nanocrystal was compressed by surface pressure, which increased with an isomorphically-isothermal decrease in N value. This compression led to a corresponding increase in the σ(N) function both with an isomorphic-isothermal decrease in size and with an isomeric (i. e., at N=const) increase in the temperature of the nanocrystal. Keywords: Gibbs surface, Tolman length, surface pressure, equation of state, gold.
  1. W.R. Tyson, W.A. Miller. Surf. Sci. 62, 1, 267 (1977). https://doi.org/10.1016/0039-6028(77)90442-3
  2. S.N. Zhevnenko, I.S. Petrov, D. Scheiber, V.I. Razumovskiy. Acta Materialia 205, 116565 (2021). https://doi.org/10.1016/j.actamat.2020.116565
  3. D. Vollath, F.D. Fischer, D. Holec. Beilstein J. Nanotechnol. 9, 1, 2265 (2018). https://doi.org/10.3762/bjnano.9.211
  4. X. Zhang, W. Li, H. Kou, J. Shao, Y. Deng, X. Zhang, J. Ma, Y. Li, X. Zhang. J. Appl. Phys. 125, 18, 185105 (2019). https://doi.org/10.1063/1.5090301
  5. D. Holec, L. Lofler, G.A. Zickler, D. Vollath, F.D. Fischer. Int. J. Solids. Structures 224, 111044 (2021). https://doi.org/10.1016/j.ijsolstr.2021.111044
  6. H. Amara, J. Nelayah, J. Creuze, A. Chmielewski, D. Alloyeau, C. Ricolleau, B. Legrand. Phys. Rev. B 105, 16, 165403 (2022). https://doi.org/10.1103/PhysRevB.105.165403
  7. E.H. Abdul-Hafidh. J. Nanoparticle Res. 24, 12, 266 (2022). https://doi.org/10.1007/s11051-022-05638-6
  8. R.C. Tolman. J. Chem. Phys. 17, 3, 333 (1949). https://doi.org/10.1063/1.1747247
  9. K.K. Nanda. Phys. Lett. A 376, 19, 1647 (2012). https://doi.org/10.1016/j.physleta.2012.03.055
  10. H.M. Lu, Q. Jiang. Langmuir 21, 2, 779 (2005). https://doi.org/10.1021/la0489817
  11. S. Xiong, W. Qi, Y. Cheng, B. Huang, M. Wang, Y. Li. Phys. Chem. Chem. Phys. 13, 22, 10648 (2011). https://doi.org/10.1039/C0CP02102D
  12. S. Ono, S. Kondo. Molecular Theory of Surface Tension in Liquids. In: Structure of Liquids. Springer, Berlin, Heidelberg (1960). P. 134--280. https://doi.org/10.1007/978-3-642-45947-4_2
  13. S.S. Rekhviashvili. Colloid J. 82, 3, 342 (2020). https://doi.org/10.1134/S1061933X20030084
  14. J. Wang, S.Q. Wang. Surf. Sci. 630, 216 (2014). https://doi.org/10.1016/j.susc.2014.08.017
  15. S. De Waele, K. Lejaeghere, M. Sluydts, S. Cottenier. Phys. Rev. B 94, 23, 235418 (2016). https://doi.org/10.1103/PhysRevB.94.235418
  16. M.N. Magomedov. Tech. Phys. 59, 5, 675 (2014). https://doi.org/10.1134/S1063784214050211
  17. V.D. Nguyen, F.C. Schoemaker, E.M. Blokhuis, P. Schall. Phys. Rev. Lett. 121, 24, 246102 (2018). https://doi.org/10.1103/PhysRevLett.121.246102
  18. D. Kim, J. Kim, J. Hwang, D. Shin, S. An, W. Jhe. Nanoscale 13, 14, 6991 (2021). https://doi.org/10.1039/d0nr08787d
  19. M.X. Lim, B. VanSaders, A. Souslov, H.M. Jaeger. Phys. Rev. X 12, 2, 021017 (2022). https://doi.org/10.1103/PhysRevX.12.021017
  20. M.N. Magomedov. Phys. Solid State 46, 5, 954 (2004). https://doi.org/10.1134/1.1744976
  21. M.N. Magomedov. Crystallogr. Reps 62, 3, 480 (2017). https://doi.org/10.1134/S1063774517030142
  22. M.N. Magomedov. J. Surf. Investigation. X-ray, Synchrotron. Neutron Techniques 14, 6, 1208 (2020). https://doi.org/10.1134/S1027451020060105
  23. M.N. Magomedov. Phys. Solid State 63, 10, 1465 (2021). https://doi.org/10.1134/S1063783421090250
  24. M.N. Magomedov. Phys. Solid State 62, 12, 2280 (2020). https://doi.org/10.1134/S1063783420120197
  25. E.N. Ahmedov. Physica B: Condens. Matter 571, 252 (2019). https://doi.org/10.1016/j.physb.2019.07.027
  26. S.P. Kramynin. J. Phys. Chem. Solids 152, 109964 (2021). https://doi.org/10.1016/j.jpcs.2021.109964
  27. S.P. Kramynin. Phys. Met. Metallography 123, 2, 107 (2022). https://doi.org/10.1134/S0031918X22020065
  28. S.P. Kramynin. Solid State Sci. 124, 106814 (2022). https://doi.org/10.1016/j.solidstatesciences.2022.106814
  29. R. Briggs, F. Coppari, M.G. Gorman, R.F. Smith, S.J. Tracy, A.L. Coleman, A. Fernandez-Panella, M. Millot, J.H. Eggert, D.E. Fratanduono. Phys. Rev. Lett. 123, 4, 045701 (2019). https://doi.org/10.1103/PhysRevLett.123.045701
  30. M.N. Magomedov. Phys. Solid State 64, 7, 765 (2022). https://doi.org/10.21883/PSS.2022.07.54579.319
  31. M.N. Magomedov. Phys. Solid State 65, 5, 708 (2023). https://doi.org/10.21883/PSS.2023.05.56040.46
  32. F. Ercolessi, W. Andreoni, E. Tosatti. Phys. Rev. Lett. 66, 7, 911 (1991). https://doi.org/10.1103/physrevlett.66.911
  33. S.L. Lai, J.Y. Guo, V. Petrova, G. Ramanath, L.H. Allen. Phys. Rev. Lett. 77, 1, 99 (1996). https://doi.org/10.1103/PhysRevLett.77.99
  34. Y. Qi, T. Cagin, W.L. Johnson, W.A. Goddard III. J. Chem. Phys. 115, 1, 385 (2001). https://doi.org/10.1063/1.1373664
  35. G. Kellermann, A.F. Craievich. Phys. Rev. B 78, 5, 054106 (2008). https://doi.org/10.1103/physrevb.78.054106
  36. M. Mohr, A. Caron, P. Herbeck-Engel, R. Bennewitz, P. Gluche, K. Bruhne, H.-J. Fecht. J. Appl. Phys. 116, 12, 124308 (2014). https://doi.org/10.1063/1.4896729
  37. A. Rida, E. Rouhaud, A. Makke, M. Micoulaut, B. Mantisi. Philosoph. Mag. 97, 27, 2387 (2017). https://doi.org/10.1080/14786435.2017.1334136
  38. M. Goyal, B.R.K. Gupta. Modern Phys. Lett. B 33, 26, 1950310 (2019). https://doi.org/10.1142/s021798491950310x
  39. J. Li, B. Lu, H. Zhou, C. Tian, Y. Xian, G. Hu, R. Xia. Phys. Lett. A 383, 16, 1922 (2019). https://doi.org/10.1016/j.physleta.2018.10.053
  40. I.M. Padilla Espinosa, T.D.B. Jacobs, A. Martini. Nanoscale Res. Lett. 17, 1, 96 (2022). https://doi.org/10.1186/s11671-022-03734-z
  41. M.N. Magomedov. J. Surf. Investigation. X-ray, Synchrotron. Neutron Techniques 6, 1, 86--91 (2012). https://doi.org/10.1134/S1027451012010132
  42. S. Zhu, K. Xie, Q. Lin, R. Cao, F. Qiu. Advances. Colloid. Interface Sci. 315, 102905 (2023). https://doi.org/10.1016/j.cis.2023.102905
  43. M.N. Magomedov. J. Surf. Investigation. X-ray, Synchrotron. Neutron Technique 6, 3, 430 (2012). https://doi.org/10.1134/S1027451012050151
  44. M.N. Magomedov. J. Surf. Investigation. X-ray, Synchrotron. Neutron Technique 7, 6, 1114 (2013). https://doi.org/10.1134/S1027451013060104
  45. M.N. Magomedov. Tech. Phys. 61, 5, 722 (2016). https://doi.org/10.1134/S1063784216050145
  46. S.N. Zadumkin, A.A. Karashaev. In: Poverkhnostnye yavleniya v rasplavakh i voznikayushchikh iz nikh tverdykh fazakh. Kabard.-Balkar. Kn. Izd., Nal'chik (1965). pp. 85--88. (in Russian)
  47. M. Zhao, Y. Xia. Nature Rev. Mater. 5, 6, 440 (2020). https://doi.org/10.1038/s41578-020-0183-3
  48. S.W. Cui, J.A. Wei, Q. Li, W.W. Liu, P. Qian, X.S. Wang. Chinese Phys. B 30, 1, 016801 (2021). https://doi.org/10.1088/1674-1056/abb65a
  49. S. Gong, Z. Hu, L. Dong, P. Cheng. Phys. Fluids 35, 7, 073315 (2023). https://doi.org/10.1063/5.0155289

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru