Tikhonov V.V.1, Gubanov V.A.1, Ptashenko A.S.1, Sadovnikov A. V.1
1Saratov State University, Saratov, Russia
Email: tvlad4@yandex.ru, andrey.po3@mail.ru, sadovnikovav@gmail.com
A new innovative device has been proposed - a miniature controlled microwave signal delay line based on short-wave exchange spin waves (ESW). The delay line is based on a three-layer dielectric-ferrite-dielectric epitaxial structure. The conversion of the electromagnetic signal into ESW is carried out in a thin transition layer at the dielectric-ferrite boundary. ESW propagates in the transverse direction of the ferrite layer and is again converted into an electromagnetic signal in the transition layer at the opposite ferrite-dielectric boundary. The duration of the delay of the passed signal is determined by the thickness of the ferrite layer and can be controlled by an external magnetic field. It has been shown that in a three-layer structure based on epitaxial films of gadolinium gallium garnet grown on a substrate of yttrium iron garnet (YIG), the delay duration of the microwave signal can reach several tens of nanoseconds with a YIG layer thickness of 100 mm. Keywords: spin waves, yttrium iron garnet, gadolinium gallium garnet, microwave signal delay.
- Y.K. Fetisov, G. Srinivasan. Appl. Phys. Lett., 87, 103502 (2005). https://doi.org/10.1063/1.2037860
- A.A. Nikitin, A.E. Komlev, A.A. Nikitin, A.B. Ustinov. Izv. vuzov, Prikladnaya nelineynaya dinamika, 30 (5), 605 (2022) (in Russian). DOI: 10.18500/0869-6632-003006
- A.B. Ustinov, V.E. Demidov, B.A. Kalinikos. Electron. Lett., 37 (19), 1161 (2021). DOI: 10.1049/el:20010809
- S.L. Vysotsky, G.T. Kazakov, A.V. Kozhevnikov, S.A. Nikitov, A.V. Romanov, Yu.A. Filimonov. Pisma v ZhTF, 32 (15), 45 (2006) (in Russian).
- Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, E. Saitoh. Nature, 464, 262 (2010). https://doi.org/10.1038/nature08876
- A. Hirohata, K. Yamada, Y. Nakatani, L. Prejbeanu, B. Dieny, P.H. Pirro, B. Hillebrands. J. Magn. Magn. Mater., 509, 166711 (2020). https://doi.org/10.1016/j.jmmm.2020.166711
- S.A. Nikitov, D.V. Kalyabin, I.V. Lisenkov, A.N. Slavin, Yu.N. Barabanenkov, S.A. Osokin, A.V. Sadovnikov, E.N. Beginin, M.A. Morozova, Yu.P. Sharaevsky, Yu.A. Filimonov, Yu.V. Khivintsev, S.L. Vysotsky, V.K. Sakharov, E.S. Pavlov. Phys.-Usp., 58, 1002 (2015). https://doi.org/10.3367/UFNe.0185.201510m.1099
- A. Barman, G. Gianluca, S. Ladak, A.O. Adeyeye, M. Krawczyk, J. Grafe, C. Adelmann, S. Cotofana, A. Naeemi, V.I. Vasyuchka, B. Hillebrands, S.A. Nikitov, H. Yu, D. Grundler, A.V. Sadovnikov, A.A. Grachev, S.E. Sheshukova, J.-Y. Duquesne, M. Marangolo, G. Csaba, W. Porod, V.E. Demidov, S. Urazhdin, S.O. Demokritov, E. Albisetti, D. Petti, R. Bertacco, H. Schultheiss, V.V. Kruglyak, V.D. Poimanov, S. Sahoo, J. Sinha, H. Yang, M. Munzenberg, T. Moriyama, S. Mizukami, P. Landeros, R.A. Gallardo, G. Carlotti, J.-V. Kim, R.L. Stamps, R.E. Camley, B. Rana, Y. Otani, W. Yu, T. Yu, G.E.W. Bauer, C. Back, G.S. Uhrig, O.V. Dobrovolskiy, B. Budinska, H. Qin, S. van Dijken, A.V. Chumak, A. Khitun, D.E. Nikonov, I.A. Young, B.W. Zingsem, M. Winklhofer. J. Phys. Condens. Matter., 33 (41), 1 (2021). https://doi.org/10.1088/1361-648X/abec1a
- F. Bloch. Z. Physik, 61, 206 (1930). https://doi.org/10.1007/BF01339661
- H. Suhl. J. Phys. Chem. Solids, 1, 209 (1957). https://doi.org/10.1016/0022-3697(57)90010-0
- M.H. Seavey, P.E. Tannenwald. Phys. Rev. Lett., 1, 168 (1958). https://link.aps.org/doi/10.1103/PhysRevLett.1.168
- G.T. Rado, J.R. Weertman. J. Phys. Chem. Solids., 11, 315 (1959). https://doi.org/10.1016/0022-3697(59)90233-1
- R.E. De Wames, T. Wolfram. J. Appl. Phys., 41, 987 (1970). DOI: 10.1063/1.1659049
- J.D. Adam, T.W. O'Keeffe, R.W. Patterson. J. Appl. Phys., 50, 2446 (1979). DOI: 10.1063/1.326980
- C. Kittel. Phys. Rev., 110 (6), 1295 (1958). https://doi.org/10.1103/PhysRev.110.836
- E. Schlomann. J. Appl. Phys., 35, 159 (1964). https://doi.org/10.1063/1.1713058
- E. Schlomann, R.I. Joseph, T. Kohane. Proceed. IEEE, 53 (1965). DOI: 10.1109/PROC.1965.4262
- Yu.V. Gulyaev, P.E. Zilberman, E.S. Sannikov, V.V. Tikhonov, A.V. Tolkachev. Pis'ma v ZhTF 14, 884 (1988) (in Russian)
- V.V. Tikhonov, A.V. Tolkachev. FTT, 36 (1), 185 (1994) (in Russian)
- P.E. Zilberman, A.G. Temiryazev, M.P. Tikhomirova. UFN, 38, 1173 (1995) (in Russian). http://dx.doi.org/10.1070/PU1995v038n10ABEH001493
- A.G. Temiryazev, M.P. Tikhomirova, P.E. Zilberman, A.V. Maryakhin. J. Phys. IV France, 7, 1 (1997). https://doi.org/10.1051/jp4:19971160
- M. Shone. Circuits. Syst. Signal Proces., 4, 89 (1985). https://doi.org/10.1007/BF01600074
- S.I. Yushchuk. Tech. Phys., 44 (12), 1454 (1999). https://doi.org/10.1134/1.1259547
- M.-B. Park, N.-H. Cho. J. Magn. Magn. Mater., 231, 253 (2001). https://doi.org/10.1016/S0304-8853(01)00068-3
- V.V. Tikhonov, A.N. Litvinenko. Appl. Phys. Lett., 115 (7), 072410 (2019). https://doi.org/10.1063/1.5098116
- V.V. Tikhonov, A.N. Litvinenko J. Magn. Magn. Mater., 515, 167241 (2020). DOI: 10.1016/j.jmmm.2020.167241
- XII Vserossiyskaya nauchno-tekhnicheskaya konferentsiya "Elektronika i mikroelektronika SVCH". Collection of reports (St. Petersburg, May 29 - June 2023 St. Petersburg: SPbGETU "Technical University LETII"), 646 p. V.V. Tikhonov, V.A. Gubanov, A.V. Sadovnikov. Elektronika i mikroelektronika SVCH. 600 p. https://mwelectronics.etu.ru/2023/ru/sbornik-dokladov-1
- H. Mehrer. Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes (Springer, 2007)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.