Linewidth study of MBE-grown wafer-fused single-mode 1.55 μm VCSELs
Kovach J. N. 1,2, Blokhin S. A. 1, Bobrov M. A. 1, Blokhin A. A. 1, Maleev N. A. 1, Kuzmenkov A. G. 1, Babichev A. V. 2, Novikov I. I. 2, Karachinsky L. Ya. 2, Kolodeznyi E. S. 2, Voropaev K. O. 3, Egorov А. Yu. 4, Ustinov V. M. 1
1Ioffe Institute, St. Petersburg, Russia
2ITMO University, St. Petersburg, Russia
3OAO OKB-Planeta, Veliky Novgorod, Russia
4Connector Optics LLC, St. Petersburg, Russia
Email: j-n-kovach@mail.ioffe.ru, blokh@mail.ioffe.ru, bobrov.mikh@gmail.com, aleksey.blokhin@mail.ioffe.ru, Maleev@beam.ioffe.ru, kuzmenkov@mail.ioffe.ru, andrey.babichev@connector-optics.com, Innokenty.Novikov@connector-optics.com, leonid.karachinsky@connector-optics.com, evgenii_kolodeznyi@corp.ifmo.ru, voropaevko@okbplaneta.ru, anton@beam.ioffe.ru, vmust@beam.ioffe.ru

PDF
In this work static and spectral characteristics of 1.55 μm range vertical-cavity surface emitting lasers with active area based on InGaAs/InGaAlAs quantum wells were studied. Efficient single-mode operation was demonstrated through the fundamental mode with a side mode suppression ratio of more than 25 dB, additionally, laser emission was polarized along the long axis of the buried tunnel junction mesa and the suppression ratio of the orthogonally polarized mode more than 20 dB was achieved. During the studies of the laser emission linewidth the emission spectral line was narrowed down to ~30-35 MHz as the output optical power increased up to ~1 mW (operating current more than 5 mA). At an output optical power of more than 2.5 mW, a broadening of the spectral line was observed, due to a rise of the laser internal temperature. The corresponding linewidth broadening factor lies in the range of 3.3-4.4 depending on the value of the population inversion factor. Keywords: VCSEL, polarization, linewidth, α-factor.
  1. B.D. Padullaparthi, J.A. Tatum, K. Iga, VCSEL Industry: Communication and Sensing (Wiley-IEEE Press, 2021), p. 352
  2. A. Babichev, S. Blokhin, E. Kolodeznyi, L. Karachinsky, I. Novikov, A. Egorov, S.-C. Tian, D. Bimberg, Photonics, 10 (3), 268 (2023). DOI: 10.3390/photonics10030268
  3. S. Spiga, D. Schoke, A. Andrejew, G. Boehm, M.-C. Amann, J.Light. Technol., 35 (15), 3130-3141 (2017). DOI: 10.1109/JLT.2017.2660444
  4. D. Ellafi, V. Iakovlev, A. Sirbu, G. Suruceanu, Z. Mickovic, A. Caliman, A. Mereuta, E. Kapon, Opt. Express, 22 (26), 32180 (2014). DOI: 10.1364/OE.22.032180
  5. A. Sirbu, G. Suruceanu, V. Iakovlev, A. Mereuta, Z. Mickovic, A. Caliman, E. Kapon, IEEE Photonics Technol. Lett., 25 (16), 1555.1558 (2013). DOI: 10.1109/LPT.2013.2271041
  6. A. Babichev, S. Blokhin, A. Gladyshev, L. Karachinsky, I. Novikov, A. Blokhin, M. Bobrov, N. Maleev, V. Andryushkin, E. Kolodeznyi, D. Denisov, N. Kryzhanovskaya, K. Voropaev, V. Ustinov, A. Egorov, H. Li, S.-C. Tian, D. Bimberg, IEEE Photonics Technol. Lett., 35 (6), 297-300 (2023). DOI: 10.1109/LPT.2023.3241001
  7. R. Shau, H. Halbritter, F. Riemenschneider, M. Ortsiefer, J. Rosskopf, G. Bohm, M. Maute, P. Meissner, M.-C. Amann, Electron. Lett., 39 (24), 1728 (2003). DOI: 10.1049/el:20031143
  8. A. Bacou, A. Rissons, J.-C. Mollier, in Vertical-Cavity Surface-Emitting Lasers XII, ed. by C. Lei, J.K.A. Guenter, (SPIE, California, 2008), 69080F. DOI: 10.1117/12.763054
  9. L.A. Coldren, S.W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley \& Sons, 2012), p. 752
  10. S.A. Blokhin, M.A. Bobrov, A.A. Blokhin, A.G. Kuzmenkov, A.P. Vasil'ev, Y.M. Zadiranov, E.A. Evropeytsev, A.V. Sakharov, N.N. Ledentsov, L.Y. Karachinsky, A.M. Ospennikov, N.A. Maleev, V.M. Ustinov, Semiconductors, 52 (1), 93-99 (2018). DOI: 10.1134/S1063782618010062
  11. S.A. Blokhin, A.V. Babichev, A.G. Gladyshev, L.Y. Karachinsky, I.I. Novikov, A.A. Blokhin, M.A. Bobrov, N.A. Maleev, V.V. Andryushkin, D.V. Denisov, K.O. Voropaev, I.O. Zhumaeva, V.M. Ustinov, A.Y. Egorov, N.N. Ledentsov, IEEE J. Quantum Electron., 58 (2), 1-15 (2022). DOI: 10.1109/JQE.2022.3141418
  12. S.A. Blokhin, M.A. Bobrov, A.A. Blokhin, A.G. Kuzmenkov, N.A. Maleev, V.M. Ustinov, E.S. Kolodeznyi, S.S. Rochas, A.V. Babichev, I.I. Novikov, A.G. Gladyshev, L.Y. Karachinsky, D.V. Denisov, K.O. Voropaev, A.S. Ionov, A.Y. Egorov, Opt. Spectrosc., 127 (1), 140-144 (2019). DOI: 10.1134/S0030400X1907004X
  13. H. Halbritter, R. Shau, F. Riemenschneider, B. Kogel, M. Ortsiefer, J. Rosskopf, G. Bohm, M. Maute, M.-C. Amann, P. Meissner, Electron. Lett., 40 (20), 1266 (2004). DOI: 10.1049/el:20046457
  14. P. Perez, A. Valle, I. Noriega, L. Pesquera, J. Light. Technol., 32 (8), 1601-1607 (2014). DOI: 10.1109/JLT.2014.2308303
  15. N.M. Margalit, J. Piprek, S. Zhang, D.I. Babic, K. Streubel, R.P. Mirin, J.R. Wesselmann, J.E Bowers, IEEE J. Sel. Top. Quantum Electron., 3 (2), 359-365 (1997). DOI: 10.1109/2944.605679

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru