Mechanisms of quenching of photoluminescence of carbon dots by metal cations
Vervald A. M. 1, Chugreeva G. N.1, Laptinskiy K. A.1, Vlasov I. I. 2, Dolenko T. A.1
1Lomonosov Moscow State University, Moscow, Russia
2Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia

PDF
The sensitivity of photoluminescence of carbon dots (CDs) to the presence of ions in the environment opens up prospects for creating optical nanosensors for heavy metal cations based on CDs, which requires knowledge of the mechanisms of the influence of ions on the photoluminescence characteristics of these nanoparticles. In this paper, for the CDs of hydrothermal synthesis the mechanisms of the quenching of their photoluminescence by five metal cations: Fe3+, Cr3+, Co2+, Pb2+, Mg2+, were determined. It was found that for all ions a dynamic mechanism of quenching of photoluminescence of CDs makes a great contribution. Keywords: photoluminescence, carbon dots, metal ions, quenching mechanisms, nanosensor.
  1. J. Liu, R. Li, B. Yang. ACS Cent. Sci., 6 (12), 2179 (2020). DOI: 10.1021/acscentsci.0c01306
  2. N.A.S. Omar, Y.W. Fen, R. Irmawati, H.S. Hashim, N.S.M. Ramdzan, N.I.M. Fauzi. Nanomaterials, 12 (14), 2365 (2022). DOI: 10.3390/nano12142365
  3. L. Ai, Y. Yang, B. Wang, J. Chang, Z. Tang, B. Yang, S. Lu. Sci. Bull., 66, 839 (2021). DOI: 10.1016/j.scib.2020.12.015
  4. M.Yu. Khmeleva, K.A. Laptinsky, P.S. Kasyanova, A.E. Tomskaya, T.A. Dolenko. Opt. i spektr., 130 (6), 882 (2022) (in Russian). DOI: 10.21883/OS.2022.06.52630.36-22 [M.Yu. Khmeleva, K.A. Laptinskiy, P.S. Kasyanova, A.E. Tomskaya, T.A. Dolenko. Opt. Spectrosc., 130 (6), 697 (2022). DOI: 10.21883/EOS.2022.06.54706.36-22]
  5. Z. Mua, J. Huaa, Y. Yanga. Spectrochim. Acta A Mol. Biomol. Spectrosc., 224, 117444 (2020). DOI: 10.1016/j.saa.2019.117444
  6. O.E. Sarmanova, K.A. Laptinskiy, S.A. Burikov, G.N. Chugreeva, T.A. Dolenko. Spectrochim. Acta A, 286, 122003 (2023). DOI: 10.1016/j.saa.2022.122003
  7. M. Batool, H.M. Junaid, S. Tabassum, F. Kanwal, K. Abid, Z. Fatima, A.T. Shah. Crit. Rev. Anal. Chem., 52, 756 (2020). DOI: 10.1080/10408347.2020.1824117
  8. F. Noun, E.A. Jury, R. Naccache. Sensors, 21 (4), 1391 (2021). DOI: 10.3390/s21041391
  9. W. Wang, J. Peng, F. Li, B. Su, X. Chen, X. Chen. Microchim. Acta, 186, 32 (2019). DOI: 10.1007/s00604-018-3140-8
  10. N. Hashemi, M.H. Mousazadeh. Opt. Mater., 121, 111515 (2021). DOI: 10.1016/j.optmat.2021.111515
  11. L.F. Dolina. Sovremennaya tekhnika i tekhnologii dlya ochistki stochnykh vod ot soley tyazhelykh metallov (Kontinent, Dnepropetrovsk, 2008), 227 s. (in Russian)
  12. K. Laptinskiy, M. Khmeleva, A. Vervald, S. Burikov, T. Dolenko. Appl. Sci., 12 (23), 12006 (2022). DOI: 10.3390/app122312006
  13. J.R. Lakowicz. Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, NY., 2010), p. 56

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru